Appendix D - New Special Functions

* AB

e BM

e BU

* BZ

s CB

¢ CX

* ER

. PB

* SC

ASCIl to Binary

Convert an sequence of ASCII characters stored in from 1 to 8 Holding Registers into a binary
number.

(Indirect) Block Move

Transfers a block of Holding Registers between the Extended Register (XR) memory and
Holding Register (HR) memory.

Byte Unpack
Extracts the upper and lower bytes from a table of registers and places these bytes into
separate Holding Registers. Used to unpack data from 8 bit analog input modules.

Bit Zero
Zero's a column of bits from a table of registers.

Compress Bit
Extract a bit column from a table of registers and places these bits their own register(s).

Checksum
Calculate the CRC or LRC over a table of registers.

Extend Register
Allocate memory for Extended Registers (XR).

Limit Check
Verify that an input number is within a upper and lower range.

Pack Byte _
Transfers bytes (either high or low byte) from a table of registers into a packed formated (two

bytes per register) in another table. Used to format data for use by 8 bit analog output
modules.

Scale
Convert a number from one range to another range.

Appendix D New Special Function

ASCIl to BINARY - AB

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y: NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The ASCHl to BINARY *AB* function will convert an ASCIl number stored in a table of registers into a
pinary number. The number may contain imbedded commas, periods (decimal points) and plus (+)
and minus () signs. This function will typically be used with the ASCII RECEIVE "AR"* special function
to assist in processing the data received by a serial port.

OP CODE
Op Code 96 defines the Literal (LT) as the AB function. Whether or not the Literal function shouid be

used depends upon the capability of the your program loader. Refer to the introduction and LT
function description in the Special Function section for programming details.

(AB)
Enable OPCODE LT XXXX
i —J— 096
‘ ———<]
Operand 1
: Length
Uses 6 words of Ladder Memory Operand 2
Op 1 - Register or Constant (1-8) Table End
op 2 - Register Label (HR/IR/OR/1G/0G YYYY)
Op 3 - Register Label (KR/IR/OR/1G/0G 2222Z) Operand 3
Op 4 - Register Label (HR/OR/0G) Destination
Operand 4
Status

Figure 1. ASCII to Binary (AB)

NLAM-B206 Update 5-3 7/90

" AB - ASCII to BINARY

SPECIFICATION

OPERAND 1 - Table Length

The AB function only processes one ASCII character per Holding Register, a multi-digit ASCII character
(12456, for example) must be stored in multiple Holding Registers. The TABLE LENGTH operand
defines how many registers are being used to holid the ASCII characters. Valid number are 1 through
8, therefore the number of ASCIl characters in the number can be between 1 and 8. The LENGTH
operand can be a constant or it can be obtained from a HR, IR, OR, IG, or OG register. Storing the
LENGTH in a register allows this operand to be changed under program control.

OPERAND 2 - Table End

This operand holds a constant or register that contains a number. That number represents a HR
reference that will be the last register in a table. That table is where the ASCIl characters are stored.
Each ASCHl character takes one HR. Since the ASCII character is stored in the lower half (byte) of the
register, the upper half (byte) of the register is not used. The number used this operand can be a
constant value or it can be obtained from a HR, IR, OR, IG or OG register. Storing the TABLE END
in a register allows this operand to be changed under program control.

OPERAND 3 - Destination

The result of the ASCII to Binary function is a binary number. This binary number is always placed in
a Holding Register. The DESTINATION operand is a number of the Holding Register that is to receive
the converted binary number. This number can be programmed as a constant or it can be obtained
from a HR, IR, OR, I1G or OG register. Storing the DESTINATION in a register allows this operand to
be changed under program control.

OPERAND 4 - Status

The AB function informs the program if it was successful in performing the conversion. If the function
failed, one or more status bits are set in a STATUS register. These status bits will help describe why
the conversion was unsuccessful. The status register can also help troubleshoot where the offending
ASCIl character is located in the table of registers.

O Y SREY TR SRR ik Sl 4
[16 [15 {14 |13 |12 |11 |10 | 9 | 8 |
+

*---+---+---+---+---¢-|'+- -+-|-

(UNUSED)

+

Conversion Complete

Conversion Overflow

Negative sign encountered

Comma encountered

Decimal encountered

1llegal characters encountered

Conversion done before TABLE END reached

AB programming error (see coil discussion)
Decimal Point/I1llegal Character position

000: none, 001: first HR, 010: second HR,
011: third HR, 100: fourth HR,

101: fifth HR, 110: sixth HR, 111: seventh

If a comma is encountered in the conversion, a status bit (bit 4) is set, but the conversion proceeds
normally. A comma counts as a Holding Register when computing the TABLE LENGTH.

NLAM-B206 Update 5-4 7/90

ASCIl to BINARY - AB

ENABLE CIRCUIT

An OFF to ON transition will cause the AB function to convert the ASCII characters found in the Jow
bytes of the table defined by the TABLE END and TABLE LENGTH parameters and place the result in
the Holding Register defined by DESTINATION. The STATUS register is updated to indicate whether
the conversion was successful or if the conversion was terminated due to some problem.

ColL

The coil will turn on if the enable contact is energized and the conversion completes normally. The coil
will remain off if any of the following occur:

Enable contact not conducting

Table Length > Table End

Table End > Highest Holding Register Used

Destination > Highest Holding Register Used

Table Length < 1

Table Length > 8

Status programmed as a constant value

Converted number exceeds 65535 (conversion overflow)

Five characters are converted before the last register in table is encountered
llegal ASCII characters are found

ASCIl Character Hex Representation

30H
31H
32H
33H
34H
35H
36H
37H
38H
3sH
28H
. 2CH
20H
2EH

+OBDNONHWN=O

All other characters are considered invalid.

Figure 1 - Legal ASCII characters for AB

NLAM-B206 Update 55 | 7/90

AB - ASCIl to BINARY

Operation

When the AB function is enabled via an OFF to ON transition, the low byte of the first register of the
table will be converted to binary (assuming that the byte is a valid ASCIl character. Table 1 gives the
valid ASCIl characters). This converted binary value is stored in a temporary location. The AB function
then reads and converts the value found in the low byte of the next higher register. This new value
is added to 10 times the value stored in the temporary location and the result is stored in the same
temporary location. The AB function then reads and converts the value found in the low byte of the
next higher register. This converted value is added to 10 times the value in the temporary location.
This sum is then stored back into the temporary jocation. The process continues until either all
characters have been converted, or an illegal character is encountered. If an illegal character is
encountered, a bit in the status register is set and a pointer to the offending HR reference is written
into three bits of the same status register. Note that the least significant digit of the ASCIl value is
stored in the higher register numbers of the TABLE, while the most significant digit of the ASCII value
is stored in the lower register numbers of the TABLE.

Example

Enter these values into an AB function (use LT with opcode 96 on your program loader)

Length HR00O1 HRO0001 = 00006
Table End HR0002 HR0002 = 00105
Destination HR0003 HRO003 = 00106
Status HR0004

HRO100 - 0031h (ASCIl 1)

HRO101 - 002Ch (ASCIt)

HR0102 - 0032h (ASClIl 2)

HR0103 - 0033h (ASCIi 3)

HRO104 - 0034h (ASCIl 4)

HRO105 - 0035h (ASCII 5)

When the ENABLE line is toggled from OFF to ON, the converted binary value should
be written into HRO106 and the status register (HR0004) should show the first bit
(conversion complete) and the fourth bit (comma encountered) as being set. The AB
function coil should be energized to indicate successful completion.

HRO106 - 3939h (Decimal 12345)
HRO004 - 00000000 00001001

Figure 2 - AB Example

NLAM-B206 Update 56 7/90

ASCIl to BINARY - AB

Applications

Frequently, the PC1200 serial port is connected to an external device (bar code reader, mass flow
meter, ultrasonic rangers, weigh scales, etc.) that transmits a stream of data to the PLC in ASCIi format.
if the ASCIl information contains numeric information, and the PLC is to perform math on that numeric
information, then the ASCIi numbers must be converted to binary.

(ASC11 Receive placed data in HR100-105)

Enable __[—
1 0?01 Opcode 096 LT0001 Opcode 096 defines this literal
—-? l——f — Y1 as a ASCII to Binary (AB)
Operand 1 Table is 6 registers long
(Length) Tabte End is HRO105
0006 Binary result placed in HRO106
Operand 2 HRO004 contains the status. Don't
(Table End) put any value here. The A8
0105 function will update it.
Operand 3 ASCl! Receive had previously
(Destination) placed data into HR100-HR105 that
0106 looked like this:
HRO100 0031H (ASCII 1)
Operand 4 HRO101 0032H (ASCII 2)
(Status) HRO102 00324 (ASCII 3)
HRO004 KRO103 0033H (ASCII 4)

HRO104 0034H (ASCII 5)
HRO105 0035KR (ASCII 6)

: After the INOOO1 contact closes,
(Process the binary number that was STATUS and DESTINATION registers
created by the AB function) are updated as follows:
HROO04 00000000 01000001

(Error: 5 digits before table end)
HRO106 3039H (Decimal 12345)
Notice that even though an error

occurred, the function still
completes.

Figure 3 - ASCIl to Binary Example

NLAM-B206 Update 5-7 7/90

" AB - ASCII to BINARY

NLAM-B206 Update 5-8 7/90

(INDIRECT) BLOCK MOVE - BM

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y: NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Indirect Block Move *BM* special function is a more flexible version of the Block Transfer *BT"
special function. it provides a mechanism to define several tables indirectly and transfer the contents
in one of two ways. One transfer mode copies a source table to a destination table, while the second
mode involves two source tables in a chained exchanged. The indirect definition of the tables allows
for redefinition from other special functions during the program execution and provides access to the
indirect Holding Register memory defined by the Extend Register special function. Only Holding
Register memory is exchanged with this function.

OP CODE

(BM)
ENABLE OPCODE LT XXXX

__{ | ”
r Operand 1 N

TABLE LENGTH

Uses & words of Ladder Memory Operand 2

Op 1 - Register Label (HR/IR/OR/1G/0G YYYY) SOURCE 1 TABLE END
or Constant Value (CV = 1 - 1792)

Op 2 - Register Label (HR/IR/OR/1G/0G 2222) Operand 3

or Constant Value (CV = 1 - 9999) SOURCE 2 TABLE END
Op 3 - Register Label (HR/IR/OR/1G/0G AAAA)
or Constant Value (CV = 1 - 9999) Operard &

Op & - Register Label(HR/IR/OR/1G/0G BBBB) DEST. TABLE END
or Constant Value (CV = 1 - 9999)

Figure 1. (Indirect) Block Move (BM)

NLAM-B206 Update 5-9 7/90

BM - (INDIRECT) BLOCK MOVE

SPECIFICATION

OPERAND 1 - TABLE LENGTH

The TABLE LENGTH defines the length of the Source or Destination Tables indirectly through the
contents of a register or directly with a Constant value. Allowable table lengths range from 1 to 1792
in magnitude. Operand 1 will be considered invalid if outside of this range.

OPERAND 2 - SOURCE TABLE 1 END

The SOURCE TABLE 1 END defines the end of Holding Register Source Table #1 indirectly with the
contents of a register or directly with a Constant Value. The absolute range of this operand is between
1 and 9999. In addition the value for this operand must be greater or equal to the TABLE LENGTH
and must be less than or equal to the Highest Holding Register Used (HHRU). Operand 2 will be
considered invalid if these conditions are not satisfied.

OPERAND 3 - SOURCE TABLE 2 END

The SOURCE TABLE 2 END defines the end of Holding Register Source Table #2 indirectly with the
contents of a register or directly with a Constant value. The absolute range of this operand is between
1 and 9999. In addition the value for this operand must be greater or equal to the TABLE LENGTH
and must be less than or equal to the Highest Holding Register Used (HHRU). Operand 3 will be
considered invalid if these conditions are not satisfied.

OPERAND 4 - DESTINATION TABLE END

The DESTINATION TABLE END defines the end of the Holding Register Destination Table indirectly with
the contents of a register or directly with a Constant value. The absolute range of this operand is
restricted between 1 and 9999. In addition the value for this operand must be greater or equal to the

TABLE LENGTH and must be less than or equal to the Highest Holding Register Used (HHRU).
Operand 4 will be considered invalid if these conditions are not satisfied.

ENABLE CIRCUIT

When the BM ENABLE CIRCUIT conducts, the operands will be checked for valid range and if ok the
transfer will occur.

COIL
The output coil is used to indicate programming errors. On any scan that the ENABLE CIRCUIT solves

true and at least one of the operands is invalid, the output coil will turn on and the tables will remain
unmodified.

NLAM-B206 Update 510 7/90

(INDIRECT) BLOCK MOVE - BM

Operation

On each scan that the ENABLE CIRCUIT solves true and all operands are valid, the contents of Source
Table #1 is copied to the Destination Table. After this first transfer, Source Table #2 is copied to the
block that originally held Source Table #1. The primary intent of the three tables exchange is to
provide a mechanism in exchanging memory with the indirect Holding Register space.

Source Indirect Kolding Registers Destination
Table #2 , Table
--- HR1792 limit
Source
Table #1
Second Transfer First Transfer

rd

If the two source tables are defined equal where SOURCE TABLE 1 END = SOURCE TABLE 2 END,
then only one transfer occurs from the combined Source Table to the Destination Table.

Source Table Destination
#1 = #2 Table

In order to create a "Table Swap", two BM functions are required. See following application section.
Defining the DESTINATION TABLE END equal to one of the SOURCE TABLE 1 END or SOURCE TABLE
2 END is unsupported and will give unpredictable results. Special checks are made so that if the
destination table overlaps the source table the data will be read from the source before it is overwritten.

The BM special function can handle large tables, up to 1792 long, in short time periods by using a
specialized Direct Memory Access (DMA) function of the CPU. 1.8 milliseconds are required for a one
way transfer of 1792 Holding Registers, 3.6 milliseconds for a two way transfer. If source power to the
PLC were to fail in the middle of a BM transfer the operation will complete. This will prevent block
tearing, however the user should have some means of labeling the block to keep track of which block
is which. In the remote case that the DMA function were to fail either during power down or normal
BM operation, bit 9 of the Fault Register will be set to indicate hardware failure.

The BM function is active every scan that the ENABLE CIRCUIT solves true. This means that the BM
function should be controlled on a scan-by-scan basis, otherwise tables may be unexpectedly
overwritten in the dual table exchange mode. For example, after three scans with the ENABLE CIRCUIT
conducting, all three tables will contain the contents of Source Table #2 if no other action is taken.

NLAM-B206 Update : 5-11 7/90

'BM - (INDIRECT) BLOCK MOVE

Applications

Three examples will illustrate the capability of the BM special Function. Single block transfer example.
Results from calculations exist in HR0041 to HRO0050, application requires ten running samples space
by one second intervals to be kept in HRs 101 to 200.

CR1000 (ER)

Op Code 16 LT0001| Since BM uses Indirect references
\ LAST HR —— Y1 to HR memory the HHRU needs to
cv = 0200 be defined by the ER special function.

ER must be programmed as the first

DUMMY element in the ladder program.
B 4 ¢cv = 0200 LAST HR defines the HHRU, give enough
room to accommodate all table sizes.
_ﬂO?E_TR]OOO CR 1000
\[—(> Dummy Coil
CR1000
time 170002
—"‘\l—-——-———‘ Preset —— ¥ Timer 0002 sets the sample rate
cv = 0010 Dec.
770002

reset Actual
"—{ \‘———_‘—_ HR0O10

Op code 99 (BM) The indirect Block Move function

TT0002 enable LT 0003] transfers 10 vatues in HROO41 to
—'T Operand 1 —— > HROOS0 to ten separate blocks
TABLE LENGTH between HRO101 and HR0200. The
cv = 0010 TR function steps the DESTINATION
TABLE through the block
Operand 2
SRC TBL 1 END
HROO011(0050)
Operand 3
SRC TBL 2 END
HR0O011(0050)
Operand &

DEST TBL END
HROO4O(see TR)

170002 _J— DESTINATION TABLE address table
step TABLE LENGTH | TROO0O4 HRO021 00110 —
——{ ‘———-————‘ cv = 0010 X 7 0022 00120
0023 00130
CR1000 TABLE END 0024 00140
reset KR0030 : 0025 00150
——‘\‘-————_ 0026 00160 [~ HRO040
POINTER 0027 00170
CR1000 HRO020 0028 00180
enable 0029 00190
—'l l————-———‘ DESTINATION 0030 00200 -
HRO040

Figure 2. - BM - Running Sample Example

NLAM-B206 Update 5-12 7/90

Applications Cont.

(INDIRECT) BLOCK MOVE - BM

Double and Single biock transfer example. Based on INO0O1, 200 registers are exchanged across the
1792 Holding Register boundary.

CR1000 (ER)
Op Code 16 LT0001| Since BM uses Indirect references
—*‘\\—————— LAST HR —— Y to HR memory the HHRU needs to
cv = 2200 be defined by the ER special function.
ER must be programmed as the first
DUMMY element in the ladder program.
- 4 cv = 2200 LAST HR defines the HHRU, give enough
room to accommodate all table sizes.
BM double transfer mode
Op code 99 (BM)
INGOO1 enable LT 0002| First Transfer
——-T Operand 1 — y{ Source Tbl #1 moved to Destination Tbl
TABLE LENGTH HRO101 - 0200 moved to HR2101 - 2200
cv = 0100 (Data table A contents copied to Temp table)
Operand 2
SRC TBL 1 END Second Transfer
HR0011(0200) Source Tbl #2 moved to Source Tbhl #1
HR2001 - 2100 moved to HRO101 - 0200
Operand 3 (Data table B contents copied to Data table A)
SRC TBL 2 END
HR0012¢2100) Note Operand 2 not = Operand 3
Operand &
DEST TBL END
HR0013(2200)
Op code 99 (8M) BM single transfer mode
140001 LT 0003
——T T————— Operand 1 —— y Combined Source Tbl to Destination Table
TABLE LENGTH HR2101 - 2200 moved to HR 2001 - 2100
cv = 0100 (Temp table copied to Table B)
Operand 2 Note Operand 2 = Operand 3
SRC TBL 1 END
HR0014(2200)
Operand 3
SRC TBL 2 END
HR0014(2200)
Operand &
DEST TBL END
HR0015¢2100)
BM0002 first transfer
HR 2200 temp HR 2100 Data HR 0200 Data
. table . Table Table
. . 8 . A
HR 2101 HR 2001 HR 0101

8M0003 single transfer

BMC002 second transfer

NLAM-B206 Update

Figure 3. - BM - Block Swap Example

5-13

7/90

BM - (INDIRECT) BLOCK MOVE

Applications Cont.

A carwash is broken into 500 zones represented by a 500 registers table. 16 car wash options brought
in from Input Group one need to be moved through the table register-by-register when pulses on
IN0O17 indicate the advance of the car to be washed. Bit picks of the registers in the table indicates
when to turn on the selected options. Several N-bit Shift Registers could be chained together to strobe
the information through the table, however a cleaner implementation would be to use the BM function
with Source and Destination overlapped with an offset of one register. Because the table location is
static in memory all operand references will use Constant Values.

CR1000 (ER)
Op Code 16 LT0001] Since BM uses Indirect references
—{\I——-—'— LAST HR ——(Y1 to HR memory the HHRU needs to
cv = 0601 be defined by the ER special function.
ER must be programmed as the first
DUMMY element in the ladder program.
- 1 cv = 0601 LAST HR defines the HHRU, give enough

room to accommodate all sizes.

INQO18 Mv0002
\ Operand 1 —(y—{ Up to 16 selections are latched
160001 into table

Operand 2
HRO101

pulse shows advance
of car Op code 99 (BM) BM single transfer mode

I§O017 enable LT 0003
——'T Operand 1 —— y{ Combined Source Table is overlaid by
TABLE LENGTH

Destination Table to create register

cv = 0500 shift table.
Operand 2 HRO101 Source Table
SRC TBL 1 END
cv = 0600 HRO102 Destinatjon
Table
Operand 3
SRC TBL 2 END
cv = 0600
Operand &
DEST TBL END
cv = 0601
HROSQ0
o
HROG01
o
Contents of HR0101 (1G0001) advances through table
o with every pulse of IN0017
BPO0O4
H 0?00 o CRO200 Table is scanned by several rungs
——T | { y—1 to turn on options in proper zones.

Figure 4. - BM - Overlaying Tables Example

NLAM-B206 Update , 5-14 7/90

(INDIRECT) BLOCK MOVE - BM

Applications Cont.

The most powerful implementation of the BM special function is to create a Holding Register bank
switching scheme. Two or more sections of the ladder program can re-use the same block of Holding
Registers for reference purposes but operate on an offset table of registers transferred in with the BM
special function. This example defines the following memory segments:

HRO001 - HR1000 - Common shared HR memory space = table A
HR1001 - HR1792 - Unshared direct HR memory *

HR1793 - HR2000 - Spare indirect memory area

HR2001 - HR3000 - HRs for first half of program = tabie B
HR3001 - HR4000 - HRs for second half of program = table C

Tables B and C will contain identification tag words, HR2001 contains 00001 and HR3001 contains
00002. These ID tags are used to insure proper table position on transition into run. A power down
in the middie of the program execution could leave tables swapped if this precaution were not taken.
The following is a flow chart showing a bank switch scenario.

Set HHRU = HR4000 with ER function
Test for current block

HR0001(XOXXX) = 00001 ?
IF NO perform single transfer BM

Source #1 = table B
Source #2 = table B
Destination = table A

Perform First half of program using values from HR2001 to HR3000. Ladder is
programmed with operand references HR0001 - HR1000.

Perform Bank switch of tables B and C with A using a Double transfer form of BM

Source #1 = table A
Source #2 = table C
Destination = table B

Perform Second half of program using values from HR3001 to HR4000. Ladder is
programmed with operand references HRO0O01 - HR1000.

Perform Bank switch of table B and C with A, to save latest block and prepare for next
ladder scan, using a double transfer form of BM.

Source #1 = table A
Source #2 = table B
Destination = table C

End of Ladder - Repeat

* All overhead functions including the BM special functions should define operands with
the unshared HR memory HR1001 to HR1792.

NLAM-B206 Update 5-15 7/90

" BM - (INDIRECT) BLOCK MOVE

NLAM-B206 Update 5-16 A 7/90

BYTE UNPACK - BU

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y: NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Byte Unpack "BU" special function is a wholesale extension of the Move Byte special function acting
to separate byte information from a contiguous table of registers or groups. Four *Unpacking' modes
are selected through the CONFIGURATION operand to define how bytes in the Source Table will be
split and copied to the Destination Table. The Source Table is split byte wise and copied low byte first,
then high byte, to the Destination Table one byte per register. Therefore, the destination is always twice
as long as the source. The Pack Byte is the logical inverse of the Byte Unpack special function.

OoP CODE

Op Code 101 defines the Literal (LT) as the BU function. Whether or not the Literal function should
be used depends upon the capability of your program loader. Refer to the Introduction and LT function
description in the Special Function section for LT programming details.

(BU)
ENABLE CIRCUIT OPCODE LT XXXX
101
H —
: Operand 1
SOURCE TABLE LENGTH
Uses & words of Ladder Memory Operand 2
Op 1 - Constant Value (CV = 1-128) SOURCE TABLE END
op 2 - Register Label (HR/IR/OR/1G/0G YYYY)
Op 3 - Register Label (HR/IR/OR/1G/0G 2222) Operand 3
Op 4 - Constant value (CV = 1-4) DESTINATION TABLE END
Operand 4
CONFIGURATION
Figure 1. Byte Block Unpack (8Y)

OPERAND 1 - SOURCE TABLE LENGTH

The SOURCE TABLE LENGTH is a Constant Value that defines the number of registers in the Source
Table. This parameter may not be less than 1 or greater than 128. Indirectly it defines the Destination
Table Length as 2 X the SOURCE TABLE LENGTH (destination maximum length = 256). Operand 1
will be considered invalid if it is not a constant or if it is outside of the accepted range

NLAM-B206 Update 5-17 _ 7/90

BU - BYTE UNPACK

OPERAND 2 - SOURCE TABLE END

The SOURCE TABLE END defines the type and address number of the last register in the Source Table
from which information is being copied. This operand may be an HR, IR, OR, IG, or OG. Address
labels may not be less than the SOURCE TABLE LENGTH, in magnitude, or greater than the highest
reference allowed for the type chosen. Operand 2 will be considered invalid if it violates the address
restrictions or if it is programmed as a constant.

OPERAND 3 - DESTINATION TABLE END

The DESTINATION TABLE END defines the type and address of the last register in the table where
information is being copied to. It is specified by an HR, IR, OR, IG or OG. Address values may not
be less than SOURCE TABLE LENGTH * 2, in magnitude, or greater than the highest reference allowed

for the type chosen. Operand 3 will be invalid if it violates the address restrictions or i it is
programmed as a constant.

The Source and Destination Table should not overlap. No checks are made to detect overlapping
tables and no measures are taken to avoid writing over the Source Table before it is read.

OPERAND 4 - CONFIGURATION

The CONFIGURATION, programmed as a Constant Value 1 - 4, specifies the manner in which the
Byte Unpack operation will be performed. Values outside of this range or programmed other than a
constant will be considered invalid. The definition of the CONFIGURATION selection is given in

table 1.

CONFIGURATION Half of Action on
Number destination used unused half
1 Low Byte High Zeroed
2 Low Byte High Untouched
3 High Byte Low Zeroed
4 High Byte Low Untouched

Table 1. CONFIGURATION Definition

ENABLE CIRCUIT

When the ENABLE CIRCUIT conducts, data is copied from the Source Table to the Destination Table
according to the CONFIGURATION.

COIL
The output coil is used to indicate programming errors. On any scan that the ENABLE CIRCUIT solves

true, and at least one of the operands is invalid, the output coil will tum on and the Destination Table
is not modified. If operands are valid the coil will remain off.

NLAM-B206 Update . 5-18 7/90

BYTE UNPACK - BU

Applications

Typical applications include: Splitting the stacked eight bit analog channels from input registers,
Splitting ASCII characters for easier manipulation, or any application which treats byte information in
a wholesale fashion. Figure 2 shows an example where 16 eight bit Analog channels are brought in
through IR 1-8 in a stacked mode and then broken apart with the BU special function into a HR table.
This example could be expanded to include alt 128 IRs.

CR1000 R]OOO CR 1000
\r (¥1 Dummy Coil

Op code 101 |(BU)
CR 0?0 LT XXXX
\[7 Operand 1 —— y—1 16 8 bit Analog Channels are split
SOURCE TBL LENGTH apart from IRs 1 - 8 and transferred to
cv = 0008 the tow byte of HRs 1 - 16. The upper byte
of the HR table is zeroed.

Operand 2
SOURCE TBL END
1R00008

Operand 3
DEST TBL END
HRO016

Operand &
CONFIGURATION
cv = 0001

The information will transfer as follows (contents shown in Hex for byte separation) :

Source Table Destination Table
High Low High Low
1R0001 01 02 KRO001 00 02
03 04 00 01
05 06 00 04
07 08 00 03
1 12 00 06
13 14 00 05
15 16 00 08
1R0008 17 18 00 07
00 12
00 1
00 14
00 13
00 16
00 15
00 18
HRO016 00 17

Figure 2. - BU Analog channel example

NLAM-B206 Update 5-19 7/90

" BU - BYTE UNPACK

NLAM-B206 Update 5-20 7/90

BIT ZERO - BZ

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y: NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Bit Zero "BZ" special function is a wholesale extension of the Bit Clear coil. A column of bits from
the defined table are zeroed when ever the enable circuit is true. The intent of the function is to clear
flags such as Out-of-Range or negative sign, once acknowledged. The CB function becomes a natural
prefix to the BZ function for Input Register manipulation.

OP CODE
Op Code 53 defines the Literal (LT) as the CB function. Whether or not the Literal function should be

used depends upon the capability of your program loader. Refer to the introduction and LT function
description in the Special Function section for LT programming details.

(B2)
ENABLE CIRCUIT OPCODE LT XXXX
53
Y B

Operand 1
TABLE LENGTH

Uses 5 words of Ladder Memory Operand 2

Op 1 - Constant value (Cv=1-256) TABLE END

Op 2 - Register Label (HR/IR/OR/IG/OG YYYY)
Op 3 - Register Label (HR/IR/OR/1G/0G/CV 2222) Operand 3
BIT COLUMN

Figure 1. Bit Zero (B2)

NLAM-B206 Update 5-21 7/90

BIT ZERO - BZ

SPECIFICATION

OPERAND 1 - TABLE LENGTH

The TABLE LENGTH, along with the TABLE END, define a table in PLC memory in which a BIT
COLUMN will be zeroed. The TABLE LENGTH is defined by a Constant Value between 1 and 258.
Operand 1 will be invalid if it is not in this range or programmed as a constant.

OPERAND 2 - TABLE END

The TABLE END defines the type and address of the last register in the table in which the bit
information is to be zeroed. This operand may be programmed as an HR, IR, OR, 1G or OG. Address
labels may not be less than the TABLE LENGTH, in magnitude, or greater than the highest reference
allowed for the type chosen. Operand 2 will be considered invalid if it violates the address restriction
or if it is programmed as a constant.

OPERAND 3 - BIT COLUMN
The BIT COLUMN, entered as a Constant Value 1 - 16, specifies which bit position out of each register

is to be zeroed. Values outside of this range or programmed other that a constant will be considered
invalid.

ENABLE CIRCUIT

When the BZ ENABLE CIRCUIT conducts, bit data is zeroed in the defined table according to the Bit
Column selection.

COlL
The output coil is used to indicate programming errors. On any scan that the ENABLE CIRCUIT solves

true and at least one of the operands is invalid, the output coil will turn on and the table is not
modified. If operands are valid the coil remains off.

NLAM-B206 Update 5-22 7/90

BZ Operation

BIT ZERO - BZ

Table 1 shows the action of the BZ special function with before and after table status.

1R0005

1R0022

Before Table Status

111111
6543210987654321

0010111111111

0010111111111

0010111111111

0010111111111 11

0000000110110011

0010111111111

0010000000000000

0010000000000000

0010111111111

00060000010111001

0000006000000010

0000000010000000

0010111111111

0010111111111

0010111111111111

0010111111111111

00000000 10000000

0000000000000001

1R0005

1R0022

After Table Status

ARRRRRE|
6543210987654321

0000111111111

0000111111111111

0000111111111111

0000111111111

0000000110110011

0000111111111111

6000000000000000

0000000000000000

0000111111111111

0000000010111001

0000000000000010

0000000010000000

0000111111111

0000111111111114

00001111111111114

0000111111111111

0000000010000000

0000000000000001

Op 1 LENGTH CV = 18
Op 2 TABLE END = [R0022
Op 3 BIT COLUMN CV = 14

NLAM-B206 Update

5-23

Table 1. BZ Bit Zero - Bit Clear operation

- 7/90

" BIT ZERO - BZ

Applications

After the CB special function captures the *Out-of-Range* flags from 18 IRs they ¢
the BZ special function so as not to effect the converted value.

an be removed with

CR1000

CR 1000

PR

LD B

P

Op code 98

Operand 1
SOURCE LENGTH
cv = 0008

Operand 2
SOURCE END
1R0022

Operand 3
DEST END
HROO11

Operand 4
BIT COLUMN
cv = 0014

(C8)
LT 0001
—(

T

Opcode 53

LENGTH
cv = 0018

TABLE END
1R0022

BIT COLUMN
cv = 0014

(B2)
L 10002
—

pummy Coil

The "Out-of-Range" bit 14 flag from IRs
5 - 22 are condensed into HR0010 & 0011

every scan

Now that the flags are saved
the IRs can be cleared with the

B2 function.

NOTE:

When using the
starting at the point of ex
occurs resetting any cleare
any monitoring device will show the cleared bits reset.
function on these types use a BT function, after BZ, to tran

NLAM-B206 Update

Figure 2. - BZ - Flag ClLearing

5-24

BZ function on /O image types IR and IG, note that the function will have an effect
ecution and then holds until the end of scan. Afterwards the /O update
d bits. Since the PC1200 answers communication requests after this update
If you desire to monitor the effect of the BZ
sfer the table to HR memory for monitoring.

7/90

COMPRESS BIT - CB

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y: NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Compress Bit *CB* special function is a wholesale extension of the Bit Pick contact. A column of
bits from the Source Table are copied to a Destination Table in a condensed format. One bit per
register is transferred from the Source Table to the Destination Table. Bit *X" in the first register of the
Source Table is copied to the first bit of the first register of the Destination Table - bit *X* in the second
register of the Source Table is copied to the second bit in the first register of the Destination Table and

SO on.

The intent is to transfer flags to a condensed table to be stored and transferred with greater ease. The
Destination Table form is compatible with the Search Matrix and Bit Operate special functions for
wholesale flag detection operations.

OP CODE

Op Code 98 defines the Literal {(LT) as the CB function. Whether or not the Literal function should be
used depends upon the capability of your program joader. Refer to the introduction and LT function
description in the Special Function section for programming details.

(CB)
ENABLE CIRCUIT OPCODE LT XXXX
¥ o
| | (7
Operand 1
SOURCE TABLE LENGTH
Uses & words of Ladder Memory Operand 2
op 1 - Constant Value (CV = 1-256) SOURCE TABLE END
Op 2 - Register Label (HR/IR/OR/IG/OG YYYY)
Op 3 - Register Label (HR/IR/OR/1G/0G 222Z) Operand 3
Op 4 - Constant value (CV = 1-16) DESTINATION TABLE END
Operand 4
BIT COLUMN

Figure 1. Compress Bit (CB)

NLAM-B206 Update 5-25 - 7/90

CB - COMPRESS BIT

SPECIFICATION

OPERAND 1 - SOURCE TABLE LENGTH

The SOURCE TABLE LENGTH, along with SOURCE TABLE END, defines a table in memory from which
a column of bits will be copied. The table length is defined by a Constant Value between 1 and 256.
Operand 1 will be invalid if it is not in this range or programmed as a constant.

OPERAND 2 - SOURCE TABLE END

The SOURCE TABLE END defines the type and address of the last register in the Source Table from
which the bit information is being copied. This operand may be programmed as an HR, IR, OR, IG or
OG. Address labels may not be less than the SOURCE TABLE LENGTH, in magnitude, or greater than
the highest reference allowed for the type chosen. Operand 2 will be considered invalid if it violates
the address restrictions or if it is programmed as a constant.

OPERAND 3 - DESTINATION TABLE END

The DESTINATION TABLE END defines the type and address of the last register in the table where
information is being copied to. The legal types are HR, IR, OR, IG, or OG. Address labels for this
operand may not be less than SOURCE TABLE LENGTH + 16, in magnitude, rounded to the next full
number. Bits required to complete a full register in the Destination Table are not altered in the transfer.
Operand 3 will be considered invalid if it violates the address restriction or if it is programmed as a
constant.

The Source and Destination Tables should not overlap. No checks are made to detect overlapping
tables and no measures are taken to avoid writing over the Source Table before i is read.

OPERAND 4 - BIT COLUMN

The BIT COLUMN, entered as a Constant Value 1 - 16, specifies which bit position out of each register
will be copied. Values outside of this range or programmed other that a constant will be considered
invalid.

ENABLE CIRCUIT

When the CB ENABLE CIRCUIT conducts, bit data is copied from the source table to the Destination
Table according to the BIT COLUMN selection.

COIL
The output coil is used to indicate programming errors. On any scan that the ENABLE CIRCUIT solves

true and at least one of the operands is invalid, the output coil will turn on and the Destination Table
is not modified. If operands are valid the coil remains off.

NLAM-B206 Update : 5-26 7/90

COMPRESS BIT - CB

CB Operation

Table 1. shows the result of a CB special function copying bit 14 from each IR in the Source Table and
copying them to the Destination Table. Since the Source Table is not an even muttiple of 16, the
Destination Table has un-referenced bits 3 through 16 in HR0011. The effected bits in the tables are
being represented by alphabetic characters to give a sense to the translation direction. In actual
practice, they would be binary values of "0* or *1°.

Source Table Destination Table

1111 11111

6543210987654321 6543210987654321

1RO005 R T R HRO010 pormlkjihgfedcba

B SRR LE AR HROO11 | -----cvvmemee- rq

caQeeeeaemeanenn
Opl1 - SOURCE TABLE LENGTH = 18

cagecenecnenes Op2 - SOURCE TABLE END = [R0022
Op3 - DESTINATION TABLE END = HROO11

R R Op4 - BIT COLUMN cv = 14

cefeccacacacnen The contents of bits 3 - 16 in HROO11
remain unchanged.

egeeemeaneoes

e

cefreeccennaneos

.-j

..k

..l

fafern e

.-n -------------

ceQeemeaeeranann

cepreesemeeenene

B R

1R0022 R R R

Table 1. CB Compress Bit - Bit Transfer operation

NLAM-B206 Update 5-27 7/90

CB - COMPRESS BIT

Applications

The compressed form of the Destination Table is desirable for use with other Westinghouse special
functions to annunciate flags.

Using table 1 for reference, the following example shows 18 Input Register from NL-1052 modules where
the fourteenth bit is the "Out-of-Range* flag. These flags are being copied and saved in Destination
Table HROO10 - HROO11. In order to display if any channels are out-of-range, the XM special function
scans the Destination Table. The XM coil will go high upon detecting any flags set high. To further
refine which channel is the offender the SM special function can step through the Destination Flag
Table showing flags set active through the contents of the BIT REGISTER.

CR 1000

CR1000 CR1000
mind

(7

LR

Op code 98
SOURCE LENGTH
cv = 0008

SOURCE END
1R0022

DEST END
HROO11

BIT COLUMN
cv = 0014

(C8)
LT 0001
—)]

INOOO1 _I—

e

MATRIX SIZE
cv = 0002

MATRIX 1 END
HROO11

MATRIX 2 END
HROO13

DEST END
HROO15

XM0002
—< ¥

XM0002 INOOOE_["

-

INOO3

H—

MATRIX SIZE
cv = 0016

MATRIX END
HROO11

BIT REGISTER
OR0001

SM0003
—(

Dummy Coil

The Out-of-Range bit 14 flag from IRs
§ - 22 are condensed into HR0O010 & 0011
every scan.

The condensed flag table is compared
(XORed) against a zero table to catch
any non zero flags. If out of range
channels exist they will be caught and
indicated by the XM coil going high.

KROO10 (XXXX) XORed HR0012 (0000) -> HROO14 (YYYY)
HROO11 (XXXX) with HROO13 (0000) -> HROO15 (YYYY)

If it is desirable to indicate

the exact "Out-of-Range"

channel - the Search Matrix function

can be used to step through the

flags, which are set high, and indicate the
channel in the BIT REGISTER operand

NLAM-B206 Update

Figure 2. - CB - Out-of-Range flag display

5-28

7/90

Checksum - CX

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y: NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Checksum function has two main uses. The first use is in average (mean) calculations. To
calculate an average of a table of numbers, you first sum the table of numbers together, then divide
by the number of numbers in the table. The Checksum function simplifies this calculation by performing
this table addition for you.

The second use of the Checksum function involves serial data communications. A checksum is
frequently appended to the end of a stream of data bytes to assist in validating the data bytes. A
receiving station is expected to duplicate the checksum calculation and compare the results of its
calculation with the checksum that was appended to the incoming message. If they don't match, the
incoming message is likely corrupted and it is discarded.

This Checksum function will calculate either a Longitudinal Redundancy Check (LRC) or a Cyclic
Redundancy Check (CRC-16). The CRC-16 calculation is the same that is used by several common
protocols including Modbus RTU. The LRC calculation is the same that is used by Westinghouse "6
Byte* protocol and Modbus ASCIL.

OP CODE
Op Code 100 defines the Literal (LT) as the CX function. Whether or not the Literal function should

be used depends upon the capability of the your program loader. Refer to the introduction and LT
function description in the Special Function section for programming details.

(CX)
Enable OPCODE LT XXX
| l 100
. R
Operand 1
Length
Uses & words of Ladder Memory Operand 2
Op 1 - Register or Constant (1-128) Table End
Op 2 - Register Label (HR/IR/OR/1G/OG YYYY)
Op 3 - Register Label (HR/IR/OR/16/0G 2222) Operand 3
Op 4 - Constant (1-4) : Destination
Operand &
Configuration

Figure 1 - Checksum

NLAM-B206 Update 5-29 7/90

" CX - Checksum

SPECIFICATION

OPERAND 1 - Table Length

The CX TABLE LENGTH operand contains a number that specifies how many registers are used in the
checksum calculation. This number may either be a constant or it may be located in an HR, IR, OR,
IG or OG register. If the number is stored in a register, a ladder program can manipulate it during
runtime.

OPERAND 2 - Table End

The TABLE END operand is a number that represents a HR reference that will be the last register in
a table. That table is where the data is stored. The number can either be a constant or it can be
located in an HR, IR, OR, I1G or OG register. The largest number (constant or value stored in a register)

cannot exceed 1792 or the highest Holding Register used in the ladder program, whichever is smaller.
The smallest number cannot be less than the LENGTH of the table.

OPERAND 3 - Destination
The DESTINATION operand points to an HR, OR or OG that is to receive the checksum,
OPERAND 4 - Configuration

The CONFIGURATION defines the type of checksum to be performed. It is specified as a constant
value in the range of 1 to 4.

Configuration Number Operation of CX Function
1 16 bit LRC
2 16 bit CRC taken low byte first then high byte
3 16 bit CRC taken high byte first then low byte
4 16 bit CRC taken from HR's low byte only

The LRC configuration treats the source table as 16 bit unsigned integers, while the three CRC modes
treat the source table as a group of bytes. Algorithms for the LRC and CRC are described later in this
section.

ENABLE CIRCUIT
On every scan that the ENABLE contact (or contact matrix) solves true, the CX special function will
compute the checksum of the table defined by TABLE END and TABLE LENGTH using the method

dictated by CONFIGURATION. The result of this operation will be placed in the register or group
specified by DESTINATION.

COIL
The output coil is used to indicate programming errors. On any scan that the enable contact is true

and at least one of the operands is invalid, the output coil will turn on. Otherwise, the coil will be off.
On any scan that the coil is turned on, the destination register is not modified.

NLAM-B206 Update 5-30 7/90

Checksum - CX

Operation

LRC Algorithm
The LRC is computed by the following procedure:

1 Set a 16 bit register to zero
2 Add a word to this register and discard any carry past the 16th bit
3 Repeat step 2 with the subsequent words (registers) until all words have been summed.

The following example illustrates the process for a sequence of words 'FA03h 10FCh 0010h 0501h™

Initialize Register 0000h
Add first + FAO3h
= FAO3h
Add second + 10FCh
= OAFFh
Add third + 0010h
= 180fh
Add fourth + 0501h
= 1010h
Resulting LRC = 1010h

CRC Algorithm

The CRC algorithm is computed by the following procedure:

Set a 16 bit register to all 1's.

Exclusive OR a byte with the low order byte of that register.

Shift the register one bit to the right.

if the bit that was shifted out (FLAG) was a 1, then exclusive OR the number
1010 0000 0000 0001’ with the register.

Repeat steps 3 and 4 until 8 shifts have been performed.

Repeat steps 2 through 5 for the next byte until all bytes have been processed.

HWON -

o O

The following example illustrates this process for the sequence of bytes '02h 07h'":

NLAM-B206 Update 5-31 7/90

" CX - Checksum

Initial register
XOR with '02h'

After Shift 1
XOR

After Shift 2
XOR

After shift 3
After Shift &
XOR

After Shift 5
After shift &
XOR

After Shift 7
After Shift 8
XOR

XOR with '07°

After Shift 1
XOR

After Shift 2
XOR

After Shift 3
XOR

After Shift &
After Shift 5
XOR

After shift 6
After Shift 7
After shift 8

MSB

Result of CRC is

LS8
1"
111

0111
1010
1101

0110
1010
1100

0110
0011
1010
1001

0100
0010
1010
1000

0100
0010
1010
1000

1000

0100
1010
1110

o1
1010
1101

0110
1010
1100

0110
0011
1010
1001

0100
0010
0001

1

"
111

AARR
0000
111

"mn
0000
111

o1
0011
0000
0011

1001
0100
0000
0100

0010
0001
0000
0001

0001

0000
0000
0000

0000
0000
0000

1000
0000
1000

0100
0010
0000
0010

1001
0100

111
0000
111

1M
0000
111

1M1
0000
111

1M
"N
0000
1"

1111
1111
0000
1M

o111
0011
0000
0011

0000
0011

1001
0000
1001

0100
0000
0100

0010
0000
0010

0001
0000
0000
0000

0000
1000

0010 0100

2

4

1111
0010
1101

1110
0001
1M

1111
0001
1110

111
1111
0001
1110

1
111
0001
1110

1M
111
0001
1110

oM
1001

1100
0001
1101

1110
0001
1M1

ot
0001
0110

0011
1001
0001
1000

0100
0010
0001

1

ELAG

oy

[~ = 3 =]

NLAM-B206 Update

5-32

Figure 4 - CRC Calculation

7/90

Checksum - CX

Applications

The PC1200 can be programmed to act as a Modbus Master if the proper sequence of bytes are
transmitted out the serial port of the PLC. This example shows. how a Modbus message (write 0008
into Holding Register 1 of slave number 7) could be sent out of the PC1200 Port B. The portion of the
code that processes the response (ASCIl Receive, etc) has been omitted for clarity. Contact

Westinghouse for assistance or a copy of the entire Modbus Master program.

A Modbus message is constructed of 5 parts: Address, Function Code, PLC address, Data and CRC
The bytes that must be sent for the example are:

Address Data CRC
slave Fnc High Low Hig Low High Low
07h 06h 00h 00h 00h 08h 7? ??

In order to properly complete the Modbus message, the CRC must be calculated:

Enable ©x)
INOOO1 L10202
——YT—————-—- Opcode —— y—— Coil is OFF to indicate successful
0100 completion of the CX function
Operand 1 (Length) KR039S 0007 h Slave address
0006 HRO396 0006 h Function code
KRO397 0000 h Address : High Byte
Operand 2 (Table End) HR0O398 0000 h Address : Low Byte
0400 HR0399 0000 h Data : High Byte
KRO400 0008 h Data : Low Byte
Operand 3 (Destination)
HRO440) Once the function is executed, the result is
placed into HR0440:
Operand 4 (Configuration) HRO440 6A88 h
0004

1n Modbus RTU, the rightmost byte of this
register (Least Significant Byte) must be
transmitted first,

Address Data CRC
Slave Fnc Righ Low High Low High Low

07h 06h 00h 00h 00h 08h 88h 6Ah

We now have the complete message that must be sent. The complete data is configured into the
following Holding Registers. what still must be done is to add the ASCII Transmit (AT) "B-Codes"
into this table of registers to force the AT function to send raw binary data rather than process
the data as ASCI! characters and vwembedded data codes (B-Codes)".

HRO393 0000 h (not used, fill in with B-Code later)

HRO394 0000 h (not used, fill in with 8-Code later)

HRO395 0007 h (Slave we are trying to talk to)

HRO396 0006 h (Modbus Function Code. 06h means write to Holding Register)
HRO397 0000 h (High Byte of PLC Address. PLC address is one less than HR number)
HRO398 0000 h (Low Byte of PLC Address.)

HRO399 0000 h (High Byte of Data to write to PLC)

HRO400 0008 h (Low Byte of Data to write to PLC)

HRO401 0088 h (CRC High as calculated by CX)

HRO402 O06A h (CRC Low as calculated by CX)

HRO403 0000 h (not used, fill in with B-Code later)

Figure 5 - Modbus Master Example

NLAM-B206 Update 5-33 ~7/90

CX - Checksum

Notice that we stored the data into registers one byte at a time rather than using the full 16
bits (which would have allowed us to store 2 bytes per register). While it is true that using
half a register is a bit wasteful, it may be easier to visualize what each byte is used for if
we split them into two registers. Using one byte per register also makes sending odd number of
bytes easier with the ASCII Transmit function (since the AT function allows us to define the
number of registers, not bytes, transmitted. Hence, sending half a register would not be

straight forward).

The next task is to send this complete message out the serial port. For this example we will
say that a modem is connected to PORT B of the NL-10758 [/0 module. In order to send a raw
binary message with the ASCLI Transmit function we use the BAxx "B-Code". Refer to your PLC
Systems Manual for more information on programming the AT function. Manually preset HR0393 and
HRO304 with the "B-Code" that instructs the AT function to send the lower byte of a table of
registers. Place the B800 "“End of Message" B-Code into HR403.

HR0393 BAG3 h (Transmit low byte only of the following table)

HRO394 0008 h (Table to send is 8 registers long)

HRO395 0007 h (Slave we are trying to talk to)

HRO396 0006 h (Modbus Function Code. 06h means write to Hotding Register)
HRO397 0000 h (High Byte of PLC Address. PLC address is one less than HR number)
HRO398 0000 h (Low Byte of PLC Address.)

HRO399 0000 h (High Byte of Data to write to PLC)

HRO400 0008 h (Low Byte of Data to write to PLC)

HRO401 0088 h (CRC High Byte calculated from CX function)

HRO402 0000 h (CRC Low Byte calculated from CX function)

HRO4LOZ B800 h (AT End-Of-Message ug-Code")

INOOOC1
Mv0200
\l~—————_ Source —

HRO120 Preset HR0120 to 00393 decimal when INOOO1
is de-energized.

Destination HRO101 is the pointer register used by the

HRO101 ASCII Transmit function to point to the
beginning of the table of data we want to
send.

We use the Move Byte (MB) function to transfer the individual bytes from the CX function into
individual bytes (Low Byte of HR440 -> HR4O1, High Byte of HR44D -> HR402). Alternately, the
Block Unpack (BU) function could have been used instead of two separate MB functions. The
reason that we unpack the CRC (instead of simply inserting a "B-Code" to tell the AT function
to sent the CRC as a binary number, is because the AT function stops sending characters when a
new B-Code is encountered. The AT function then processes the AT function on the next scan.
Since the AT function will momentarily stop sending characters, the Modbus receiver may
incorrectly assume that an “End of Message" timeout has been received. Modbus defines an “End
of Message® when 3.5 character times elapse without data reception. One character time is bits
in characters/baud. (i.e. 1 start bit plus 8 data bits plus 1 parity bit plus 2 stop bits
equals 12 bits. Divide 12/9600 = 1.25 mS per character. 3.5 character times = 4.375 mS).

INOOO1
MB0204
——|\ Source —
HR0440
Move the lower byte of the CRC to HR401 in
Destination the AT PRINT table.
HRO401
INOQO1
MB0205
——i\}-——————" Source —
HRO0440
Move the upper byte of the CRC to HR402 in
Destination the AT PRINT table.
HR0402

Figure 6 - Modbus Master Continued

NLAM-B206 Update 5-34 | 7/90

Checksum - CX

INOOO1
AT0203
ASCIl Transmit — r—
AT0203
-——" Return Register Return Register is a scratch pad register used
HROC10 by the ASCII Transmit (AT) function.
Teble £nd HRO100 defines the last table of the data to
HRO410 be written out of the serial port.
pPointer HRO101 holds a number between 1 and the
HRO101 maximum number of registers in the table (in
this case, 100) that represents the start of
Destination the message. In this case we write the
0002 number 393 to correspond to HRO393.
Destination 2 means, transmit this request out
serial Port 2 (Channel B as indicated on the
NL-10758 1/0 module).
(Process the response from the Modbus Slave)

Figure 7 - Modbus Master Continued

NLAM-B206 Update 5-35 7/90

" CX - Checksum

NLAM-B206 Update 5-36 7/90

EXTEND REGISTER - ER

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y: NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Extend Register "ER* special function is the ladder window into the Highest Holding Register Used
(HHRU) Executive Parameter. it provides a mechanism to expand beyond the direct HHRU address
reference limits of 1792, up to the End Of Program *EOP* word or HR9999 maximum. This expanded
Holding Register memory can be accessed indirectly by the Indirect Block Move *"BM", ASCII Transmit
and Receive *AT* and *AR’, Port Transmit "PT", ASCIl to Binary Convert "AB* and Check Sum *CX"
special functions.

The indirect Holding Register memory can be used to store recipes, presets and other batch
parameters. In addition this memory is ideal for ASCHl or Port Transmit communication buffers and work

space.
OP CODE

Op Code 16 defines the Literal (LT) as the ER function. Whether or not the Literal function should be
used depends upon the capability of your program loader. Refer to the introduction and LT function
description in the Special Function section for programming details.

(ER)

ENABLE OPCODE LT XXXX

|| 16

(r
l r Operand 1
LAST HR

Uses & words of Ladder Memory Operand 2

Op 1 - Constant Value (1 - 9999) DUMMY

Op 2 - Constant Value (1 - 9999)

Figure 1. Extend Register (ER)

NLAM-B206 Update 5-37 7/90

ER - EXTEND REGISTER

SPECIFICATION

OPERAND 1 - LAST HR

LAST HR defines the Highest Holding Register Used or the HR upper limit. It is programmed as a
Constant Value between 1 and 9999 maximum. The HHRU must be lower in memory than the End
Of Program (EOP) definition.

OPERAND 2 - DUMMY

A Constant Value between 1 and 9999 which must be programmed to satisfy the special function
format of 2 operands (LT op codes 16-47). It is not used by the function, however for clarity it is
suggested to be made equal to Operand 1.

ENABLE CIRCUIT
The ENABLE CIRCUIT has no function in this special function.
COIL

The ER Coil will follow the status of the ER enable circuit. It does not give any information as to the
status of the ER function.

OPERATION

The ER special function must be the first function in the program to insure that the HHRU is properly
defined. Failure to follow this rule will cause a User Software fault condition bit 7. This function is
executed on the first scan after a transition into Run. Operand one is used to define the Highest
Holding Register Used and reserve a block of memory. Untit the ER function is executed, the user
cannot access Holding Registers above the standard limit of 1792 with other functions such as BM, AB,
CB etc. During ER execution the value defined by Operand one is compared to the present value of
HHRU. If the ER value is larger then the HHRU is overwritten with the new value.

Once the ER function is executed the only way to allocate more or less memory for Holding Register
storage is to, transition to STOP/PROGRAM mode, reprogram operand 1, and then transition back into
RUN mode. Once the HHRU has been increased, by ER, beyond 1792 it cannot be reduced below
1792 without reprogramming the function and using the register re-pack function of the program loader
to compress the HHRU down to the smaller limit.

If a program containing an ER function is down-loaded to the PC1200, the actual number of HHRU for
this program will not be calculated by ER until the unit is put into RUN mode. The user should activate
the ER function after down-loading and before editing such a program. The program loader requires
this HHRU reference for file recording and program bounds.

If operand 1 is not programmed as a constant or if operand 1 is the reference number of a register
above the EOP, or if the ER function is not programmed as the first rung of the program, or if the
enable contact matrix is made up of more than one contact, the PC1200 will be put into FAULT with
a User Software Error - fault bit 7.

Note - Only PC1200s with 16K of user memory have sufficient memory to set the HHRU to 9998. The

user memory holds both Holding Registers and the ladder program. See Section 6 of the 1000 Series
Systems Manual for user memory definition.

NLAM-B206 Update 5-38 7/90

EXTEND REGISTER - ER

Applications

A control engineer wants to design a PC1200 system where 4K of memory will be allocated to recipes.
it has been determined that 2K is enough for the ladder and that the base reference up to 1792
Holding Registers will be used as well. Adding these segments together is slightly below 8K and
therefore a PC1200-X042 is selected. The total register allocation will be 1792 plus 4K or 5888 words.
As the first programming action the engineer programs an ER special function with the first operand
equal to 5888. The PC1200 is then put into RUN mode to set the HHRU equal to operand 1. From
this point on the holding register block is marked and the rest of the program can be structured.

Op code 16 (ER)
CR1000 LT 0100
—‘]\T———_ Operand 1 — y{ Upon Transition into RUN mode the

LAST HR ER function compares operand 1 against

cv = 5888 the present value of HHRU. 1f operand 1
is larger than the present HHRU and less

OPERAND 2 than the EOP then the HHRU will be written

DUMMY by the Constant Value defined in operand 1

cv = 5888

Figure 2. - ER - Ladder Window to the HHRU

NLAM-B206 Update 5-39 7/90

' ER - EXTEND REGISTER

NLAM-B206 Update 5-40 7/90

LIMIT CHECK - LX

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y; NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Limit Check "LX* special function determines if the value stored within a register or group is within
specified limits.

Oop CODE
Op Code 54 defines the Literal (LT) as the LX function. Whether or not the Literal function should be

used depends upon the capability of you program loader. Refer to the introduction and LT function
description in the Special Function section for LT programming details.

(LX)
ENABLE CIRCUIT OPCODE LT XXXX

| 54
iy >
Operand 1
TABLE-TENGTH (N¥ul’

Uses S5 words of Ladder Memory Operand

Op 1 - Register Label (HR/IR/OR/1G/0G YYYY) T ND LR Ut lT”
or Constant Value (CV = 1-9999)

Op 2 - Register Label (HR/IR/OR/1G/0G 2222) Operand 3 R
or Constant Value (CV = 1-9999) Bi7 coLuwn MY LY r

Op 3 - Register Label (HR/IR/OR/1G/0G WwwW)
or Constant Value (CV = 1-9999)

Figure 1. Limit Check (LX)

NLAM-B206 Update 5-41 7/90

"X - LIMIT CHECK

SPECIFICATION

OPERAND 1 - INPUT

The INPUT defines the type and address of the register which contains the tested value or it can be
defined as a Constant Value. Legal program defintions are HR, IR, OR, I1G, OG, or Constant Value.

OPERAND 2 - LOW LIMIT

The LOW LIMIT defines the type and address of the register which contains the lower bound to which
the INPUT is compared or it can be defined as a Constant Value. Legal program definitions are HR,
IR, OR, IG, OG or Constant Value.

OPERAND 3 - HIGH LIMIT

The HIGH LIMIT defines the type and address of the register which contains the upper bound to which
the INPUT is compared. Alternatively it can be programmed as a Constant Value. Legal program
definitions are HR, IR, OR, IG, OG or Constant Value.

ENABLE CIRCUIT

When the LX ENABLE CIRCUIT conducts the equation LOW LIMIT = INPUT = HIGH LIMIT and LOW
LIMIT = HIGH LIMIT is tested.

ColL

if the ENABLE CIRCUIT is energized and the above equation solves true the coil will be energized. If
the enable is un-energized or LOW LIMIT > HIGH LIMIT the coil will remain off.

NLAM-B206 Update 5-42 A 7/90

LIMIT CHECK - LX

Applications

Frequently it is desirable to know # a measured value stays within safe limits. The following example
of figure 2 compares the temperature value coming in on an Input Register against safe limits for a
refrigeration system. If the temperature falls outside of the specified limits an alarm is set.

CR1000 R]OOO CR 1000
\[X Y| Dummy Coil

Op code 54 (LX)
CR}000 LT 0100
———1\?—-————-——-——' Operand 1 — y1 Temperature comes in on IR0001
INPUT and is compared against the values
IR0001 stored in HROOO1 & 0002.
As long as the temperature remains
OPERAND 2 with in the limits, the coil stays on.
LOW LIMIT
HRO001
Operand 3
Kigh Limit
HRO0O02

Lx0}00 1 0?01 CRO001
———T\ \r* tr CROOG1 acts as the temperature alarm
INOOO1 cancels the alarm if the condition
CRTOT1

is resolved

Figure 2. - LX - Temperature Test

NLAM-B206 Update 5-43 7/90

" X - LIMIT CHECK

NLAM-B206 Update 5-44 7/90

PACK BYTE - PB

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y; NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Pack Byte *PB" special function is a wholesale extension of the Move Byte special function acting
to condense byte information into a contiguous table of registers or groups. Four *Packing® modes are
selected through the CONFIGURATION operand to define which byte, high or low, in the Source Table
will be picked and copied to the Destination Table, stacked two bytes per register. This is a reduction
operation and therefore the destination will always be roughly one half the size of the source (an odd
length source necessitates an un-referenced extra byte in the destination). The Byte Unpack *BU*
special function is the logical inverse of the Pack Byte special function.

OP CODE
O Code 102 defines the Literal (LT) as the PB function. Whether or not the Literal function should be

used depends upon the capability of your program loader. Refer to the introduction and LT function
description in the Special Function section for LT programming details.

(PB)
ENABLE CIRCUIT OPCODE LT XXX
| 102
HE -

Operand 1
SOURCE TABLE LENGTH

Uses & words of Ladder Memory Operand 2.

op 1 - Constant value (CV = 1-256) SOURCE TABLE END

Op 2 - Register Label (HR/IR/OR/1G/0G YYYY)

Op 3 - Register Label (HR/IR/OR/1G/0G 2222) Operand 3

Op 4 - Constant value (CV = 1-4) DESTINATION TABLE END
Operand &

CONFIGURATION

Figure 1. Pack Byte Block (PB)

SPECIFICATION

OPERAND 1 - SOURCE TABLE LENGTH

The Source Table Length is specified as a Constant Value that defines the number of registers in the
source table. This parameter may not be less than 1 or greater than 256. Indirectly it defines the

Destination Table as 1/2 X the SOURCE TABLE LENGTH, rounded to the next whole number. Operand
1 will be considered invalid if it is not a constant or if it is outside of the accepted range

NLAM-B206 Update 5-45 7/90

" PB - Pack Byte

OPERAND 2 - SOURCE TABLE END

The SOURCE TABLE END defines the type and address of the last register in the Source Table from
which information is being copied. This operand may be programmed as an HR, IR, OR, IG or OG.
Address labels may not be less than the SOURCE TABLE LENGTH, in magnitude, or greater than the
highest reference allowed for the type chosen. Operand 2 will be considered invalid if it violates the
address restrictions or if it is programmed as a constant.

OPERAND 3 - DESTINATION TABLE END

The DESTINATION TABLE END defines the type and address of the last register in the table where
information is being copied to. The legal types are HR, IR, OR, IG or OG. Address labels for this
operand may not be less than SOURCE TABLE LENGTH + 2, in magnitude, rounded to the next whole
number. Operand 3 will be considered invalid if it violates the Address restriction or if it is programmed
as a constant.

The Source and Destination Tables should not overiap. No checks are made to detect overlapping
tables and no measures are taken to avoid writing over the Source Table before it is read.

OPERAND 4 - CONFIGURATION

The CONFIGURATION, programmed as a Constant Value 1-4, specifies the manner in which the Pack
Byte operation will be performed. Bytes are always copied from the Source Table's low byte first, then
high byte. Values outside of (CV = 1-4) this range or programmed other than a constant will be
considered invalid. The definition of the CONFIGURATION selection is given in table 1.

If the Source Table has an odd length, then the last register in the destination will have one byte
unaltered. If the CONFIGURATION is CV= 1 or 3 then the upper byte will be left unaltered.
Alternatively if the CONFIGURATION is CV = 2 or 4 then the lower byte will be left unaftered.

CONFIGURATION Half of Order of filling
Number Source used Destination
1 Low Byte 1st->Low / 2nd->High
2 Low Byte 1st->High / 2nd->Low
3 High Byte 1st->Low / 2nd->High
4 High Byte 1st->High / 2nd->Low

Table 1. CONFIGURATION Definition

ENABLE CIRCUIT

When the PB ENABLE CIRCUIT conducts, data is copied from the Source Table to the Destination Table
according to the CONFIGURATION.

COIL
The output coil is used to indicate programming errors. On any scan that the ENABLE CIRCUIT solves

true and at least one of the operands is invalid, the output coil will turn on and the Destination Table
is not modified. If operands are valid the coil will remain off.

NLAM-B206 Update 5-46 7/90

PACK BYTE - PB

Applications

Typical applications include: Condensing eight bit analog channels 2 per Output Register to save on
addressing, Condensing ASCIl characters for use with ASCII Transmit, or any application which treats
byte information in a wholesale fashion.

Figure 2 shows an example where 15, eight bit, Analog channels are condensed and sent out through
ORs 1-8 in a stacked mode. This example could be expanded to include all 128 ORs.

CR1000 R]OOO CR 1000
\| — y| Oummy Coil

Op code 102 (PB)
CR 0?0 LT XXXX
\If SOURCE LENGTH [—< > 15 8 bit Analog Channels are condensed
cv = 0008 from HRs 1 - 15 and transferred in a packed
mode to ORs 1 - 8.

SOURCE END
HROO16

DEST END
OR0008

CONFIGURATION
cv = 0001

The information will transfer as follows (contents shown in Hex for byte separation) :

Source Table Destination Table

High Low High Low
HRO001 01 02 OR0001 04 02

03 04 08 06

05 06 14 12

07 08 18 16

1 12 24 22

13 14 28 26

15 16 34 32

17 18 OR0008 00 3%

21 22

23 26 The upper half of OR0008 is unchanged

25 26

27 28

3 32

33 34
HRO015 35 36

Figure 2. - PB Analog channel example

NLAM-B206 Update 5-47 7/90

" PB - Pack Byte

NLAM-B206 Update 5-48 7/90

SCALE - SC

PC-1100-X01Y: NOT SUPPORTED PC-1100-X05Y: NOT SUPPORTED

PC-1100-X02Y: NOT SUPPORTED PC-1200-X02Y: SUPPORTED (= V1.6)

PC-1100-X03Y: NOT SUPPORTED PC-1200-X04Y: SUPPORTED (= V1.6)
DESCRIPTION

The Scale *SC* special function converts an INPUT range of values into an OUTPUT range of values.
The translation is accomplished by entering the limits of the INPUT and OUTPUT ranges. The result
is equivalentto a Y = mX + b translation. In addition to saving memory over use of standard math
functions, this function checks for INPUT out-of-rangs, calculates the scaling factor *m* and has a built-
in rounding routine.

OP CODE
Op Code defines the Literal (LT) as the SC function. Whether or not the Literal function shouid be used

depends upon the capability of your program loader. Refer to the introduction and LT function
description in the Special Function section for programming details.

(SC)
ENABLE CIRCUIT OPCODE LT XXXX
‘ 87
H - x
Operand 1 _
. IN HIGH
Uses 6 words of Ladder Memory Operand 2
Op 1 - Register Label (HR/IR/OR/1G/0G YYYY) INPUT
Op 2 - Register tabel (HR/IR/OR/1G/0G 2222)
0p 3 - Register Label(HR/IR/OR/IG/OG AAAA) | Operand 3
Op 4 - Register Label (HR/IR/OR/1G/OG BBBB) OUT HIGH
Operand &
oUTPUT

Figure 1. Scale (SC)

NLAM-B206 Update 5-49 | 7/90

SC - SCALE
SPECIFICATION

OPERAND 1 - IN HIGH

The IN HIGH operand defines the type and address of a register pair containing the INPUT boundaries.
The IN HIGH register is defined directly by operand 1 while the IN LOW register is referenced indirectly
as the preceding memory location (operand 1 address minus one).

The allowable range for the IN HIGH and IN LOW operands is 0 - 65535. To have meaning however,
IN HIGH should be greater than IN LOW. The legal register types are HR, IR, OR, IG, or OG. IN HIGH
will be considered invalid if it is programmed as a constant or if there is no valid address preceding
it (i.e. IN HIGH programmed as IG0001) for the implied in Low operand. In addition, address labels
may not be greater than the highest allowed reference for the type chosen.

OPERAND 2 - INPUT

The INPUT operand defines the type and address of the register which contains the value to be scaled.
The legal register types are HR, IR, OR, IG, or OG. The range of this operand is intended to stay within
the bounds of IN HIGH and IN LOW. If the bounds are exceeded, the OUTPUT will latch at the
appropriate boundary and the SC coil will turn on. If the operand is programmed as a constant it will
be considered invalid.

OPERAND 3 - OUT HIGH

The OUT HIGH operand defines the type and address of a register pair which contain the OUTPUT
boundaries. The OUT HIGH register is defined directly by operand 3 while the OUT LOW register is
refgrenced indirectly as the preceding memory location (operand 3 address minus one).

The allowable range for the OUT HIGH and IN LOW operands is O - 65535. To have meaning however,
OUT HIGH should be greater than OUT LOW. The legal register types are HR, IR, OR, IG, or OG. OUT
HIGH will be considered invalid if it is programmed as a constant or if there is no valid address
preceding it (i.e. OUT HIGH programmed as 1G0001) for the implied OUT LOW operand. In addition,
address labels may not be greater than the highest allowed reference for the type chosen.

OPERAND 4 - OUTPUT

The OUTPUT is the register where the result of the scaling special function is placed. This value will
always be in the range of OUT LOW and OUT HIGH. Under certain invalid conditions defined later in
function operation, no operation occurs (OUTPUT is unchanged) and the SC coil is set high. The legal
register types are HR, IR, OR, IG, or OG. This operand will be considered invalid if programmed as
a constant.

ENABLE CIRCUIT
On every scan that the ENABLE CIRCUIT solves true, the SC function is active. If all of the operands

are programmed in a valid manner and the operand contents test valid, then the value specified by the
INPUT is scaled and the scaled value is stored in the QUTPUT operand.

NLAM-B206 Update - 550 7/90

SCALE - SC

SC OPERATION

Under valid conditions the Input is scaled using the equation Y = mX + b in the following form:
Y = OUTPUT = (INPUT - IN LOW) * Scals factor + OUT LOW where:
OUT HIGH - OUT LOW

m = Scale Factor = , (bias) b = OUT LOW, X = INPUT
. IN HIGH - IN LOW

The actual order of operation that will be performed to calculate the OUTPUT are as follows:

OUTPUT = {J(INPUT - IN LOW) * (OUT HIGH - OUT LOW)] / (IN HIGH - IN LOW)} + OUT LOW

The result of the divide will be rounded up if the remainder is greater than or equal to 0.5, otherwise
the remainder will be truncated. If because of round off, the OUTPUT is outside the range specified
by OUT HIGH and OUT LOW, the OUTPUT will be set to the nearest limit.

RESTRICTION ON OPERATION

INPUT Range
If the INPUT is less than the value of iIN LOW, the output will be set to OUT LOW. If the INPUT

is greater than IN HIGH, the OUTPUT will be set to OUT HIGH.

Limits
The boundaries should solve the relationship - (IN LOW < IN HIGH) and (OUT LOW = OUT

HIGH) - true. If the relationship is false the setup will be considered invalid and no scaling will
be performed and the output will remain unchanged.

COIL

The coil is used to signal alarms. If abnormal conditions occur such as invalid operands, boundaries
are setup with invalid comparisons, or the Input is out-of-range, the coil is set high. Under valid
conditions the coil will remain off. In summary the coil will turn on only if the contact enable matrix
solves true and if any of the following conditions exist:

1) Operands are defined invalid

a) Constant used

b) Address reference higher than maximum allowed for type

c) Operand 1 or 3 is programmed with no room for implied operands
2) An illegal boundary set-up is used

a) IN LOW > IN HIGH or OUT LOW > OUT HIGH

b) IN LOW = IN HIGH (Scaling factor would have a divide by zero)
3) INPUT out of range - INPUT < IN LOW or INPUT > IN HIGH

NLAM-B206 Update 5-51 | 7/90

'SC - SCALE

Applications

A field transducer supplies a 4-20 mA current loop signal to an NL-1052 Analog to Digital convertor
module. The current signal is proportional to the actual process temperature where 4 mA equals 100
degrees F and 20 mA equals 350 degrees F. The 12 bit resolution NL-1052 module converts this signal
into a number between 0 to 4000 and places this value into an Input Register during the I/O update

scan.

The ladder program can use the raw binary value for monitor or control purposes, however the control
engineer wants to display the temperature in Engineering units.

Since the current loop link in the information chain is proportional to the temperature and the converted
Input Register value, its effect cancels out of the conversion equation. Graphically figure 2. shows the
relationship. In this example the temperature and the Input Register converted binary value are
fepresented by the following proportion:

Y (Output degrees F) Input Register Value

350 - 100° F 4000 - O

At an Input Register Value of *0* the temperature equals 100 which creates the bias term 'b' and
completes the equality into the recognizable Y = mX + b form

Y = {Input Register value * [(350-100°F) / (4000 - 0)}} + 100°F

400 —
350 —-t‘tttt"ﬁ*ititttt’iito (4000[350)
*
300 *
x*
*
*
Y Degrees f 200 — *
IlePUTII *
*
*
100 (0,100) *
_T .
*
*
0 -
l | l [
0 1000 2000 3000 4000
X Input Register Value
lll"PUTII

Figure 2. Graphical Scaling Representation

NLAM-B206 Update 5-52 7/90

SCALE - SC

Application cont.

All of this math becomes somewhat transparent with the Scale special function. Al that is necessary
for the user to know is the upper and lower bounds of the INPUT conversion (4000 and 0) and the
upper and lower bounds of the corresponding Engineering units (350 and 100). Figure 3 continues
the example of an INPUT coming in on IR0001 and scaled Output sent to HR0010. A BCD conversion
is performed on HR0010 to create an LED display compatible format on OR0001. The Control Engineer
decides to represent the engineering units in tenths of a degree Fahrenheit so as to expand the range
and save the fractional information. Therefore 3500 and 1000 are used instead of 350 and 100.

CRJ000 R]OOO CR 1000
——1 H\r — y] Dummy Coil
Op code 87 (sC)
CR1000 LT 0001
—-LT—————— Operand 1 < 7
IN HIGH Input Boundaries
KRO002 Implied Operand
(Operand 1 - 1) INPUT LOM HROCO01 (00000)
Operand 2 Operand 1 INPUT HIGH HR000Z2 (04000)
INPUT
1R0001 Output Boundaries
Implied Operand
Operand 3 (Operand 3 - 1) QUTPUT LOW HRO003 (01000)
QUT HIGH Operand 3 OUTPUT HIGH HROOO4 (03500)
HRO004
Operand &
ouTPUT
HR0010
INOOO1
—J— Operand 1 BD0002
——i i——————— SOURCE — r1 Temperature displayed in OR0001 in BCD format
HROO10 range is 1000 to 3500 tenths of a degree F.
Operand 2
DESTINATION
OR0001

Figure 2. - SC - Scale Example

NLAM-B206 Update 5-53 7/90

