NCMZ 1799 System Manual Page 5

Chapter 1 Introduction

The NCMZ-1799 is a general purpose communications module. Mounted in an 1/O rack, the
1799 allows the PC1000 family of Programmable Controllers to communicate with a variety of
devices. Features include:

Adjustable baud 300 - 38400 BPS
Asynchronous 7,8,9,10,11 or 12 bhit frame
Dual Port access to PC1000 1/O bus allows fast CPU access
3 communication channels RS232
1 communication channel RS485
fully buffered interrupt driven serial ports
32k bytes RAM memory, 26k bytes free for user program
16k bytes EPROM available (12k bytes if certain option packages installed)
string variables and string functions
multiple statements per line
multitasking capabilities
battery backed real time clock
program back-up in EPROM
high speed of execution
access to most PC /O registers (OR, OG, IR, IG) without any ladder program
being required
extensive program-editing facilities
- optional external 5 Vdc power supply can be used to reduce CPU power drain
rack position independent
user written assembly language subroutines can be mixed with BASIC
programs can be locked, preventing modification or examination
can be used as a remote 1/O controller using PC1 100’s as remote 1/O drops

Various firmware options may be installed to further modify its operation. Refer to the
Westinghouse Programmable Controller Price List 16-360 for more information.

This manual describes the BASIC interpreter and Modbus Slave option (see page 103). This
version of the module must be programmed by the user before it will perform any function. You
may write your own programs in a variety of languages including BASIC, 6809 assembly or C.
Support for the BASIC language is built in. You must buy an assembler or C compiler if you
wish to program in either of these two languages. This manual supplies nearly all the
information you will need to program this module in BASIC.

To program in assembly or C, you will need to refer to the schematic diagrams in Appendix R.
Additionally, if you plan on programming any serial port functions from C or assembly, you will
need the Motorola 68681 DUART manual. This manual can be ordered directly from Motorola.

Although programming in C or other high level language may add many significant features
(floating point math, etc.), the BASIC supplied with this module is optimized to quite easily
handle most communications oriented tasks.

Since this module may be used for a variety of purposes, Westinghouse cannot assume
any responsibility for any applications or uses of this program, nor for any errors or the
consequent results there of.

Page 6

NCMZ 1799 System Manual

11

Beginners All Purpose Symbolic Instruction Code (BASIC)

Several excellent books exist that teach the fundamentals of BASIC. You are encouraged to
do further reading on this programming language. However, there are a few rules that will
help in your understanding of this important language.

Line Numbers
All BASIC statements begin with a line number.

100 PRINT ‘This is a test’
110 PRINT “This is another test”

The BASIC interpreter automatically sons the program so that statements with a lower line
number appear in the listing before the statements with a higher line number.

Equations
BASIC is particularly adept at certain math functions.

100 A = B*I00 multiply the variable B by 100 and place result in variable A
110 B = (C/100)+(45*D) combination of division, addition and multiplication

Variables

Data is stored by BASIC in memory locations. These memory locations are accessed by your
program. These memory locations are called ‘variables”, because they are referenced in your
program by an algebraic variable (like A, B, etc.). BASIC offers several types of variables,

Integer Variables
Store numbers ranging from -32768 to +32767 (optionally, 0 to 65535). BASIC reserves
two bytes (16 bits) of memory for this variable type. The NCMZ BASIC interpreter calls

this type of variable, global.

Example : A = -5000
A = $C100 (store the value in hexadecimal)
Byte Variables
Store numbers ranging from 0 to 255. The NCMZ BASIC interpreter calls this type of
variable local.

Example : LA =100

String Variables
Stores a sequence of bytes that are not interpreted as a number. Typically used to
store messages, binary protocols and other sequence of characters that have meaning
only when viewed as a combination of characters.

Example : A$ = ‘This is a test message’

Array Variables
Stores a whole table of numbers. The NCMZ BASIC interpreter will permit you to
designate one or more of the integer variables to be array variables.

Example : A(20) = -3421
A(21) = 1110
A(22) =7

NCMZ 1799 System Manual Page 7

Interpreter

The microprocessor used by the NCMZ module only understands the native instruction code
for that chip. The native code is call ‘machine code”. Machine code (or its cousin assembly
language’) is hard to read and worse, requires many instructions just to perform a simple task.

One way of working around those disadvantages is to write a special program for the
microprocessor that would read a block of ASCII statements and expand each statement into
appropriate machine code. The ASCII statements would be formatted in such a way that they
would be easy to read, far easier than the equivalent assembly code.

For example, the IBM PC microprocessor (8088) could be programmed to take two numbers
from memory, add them together and then place the result somewhere else in memory. The
assembly code to do that would look like:

PUSH AX ;save AX register

MOV AX\Variablel ;putVariablel into microprocessor’'s AX register
A DD AXVariable2 ;add Variable2 to AX register

MOV Variable3, AX ;put sum back into memory

POP AX ;restore AX register

In BASIC the same task would look like:
100 C=A+8B ‘REM add A and C together, place result in C

Certainly the BASIC code is much easier to read than the assembly code. But remember, the
microprocessor is running an “interpreter’ that interprets (converts) the BASIC code into the
native machine code for that particular microprocessor. The interpreter must be told to convert
the BASIC program (typed in ASCII) into machine code. This is accomplished by typing:

RUN

at the command prompt. ‘RUN’ tells the interpreter to convert, on a line by line basis, each
BASIC statement into the appropriate microprocessor machine code.

Once your program is running, the prompt disappears and the interpreter begins executing your
program.

It may be a little confusing just how you send a ‘RUN” command to the module. Well, the
module is preprogrammed to accept ASCII characters on PORT A as direct command to the
module. You could think of PORT A as being the 1799 program loader port.

The easiest way of sending ASCII characters to the module is with a terminal program running
on an IBM PC (or any other type of computer for that matter). Westinghouse supplies a
terminal program *"NC799COM.EXE" that may be used for that purpose. Any other program
(Relay, Smartcom, Crosstalk, etc.) would be just as good.

The 1799 module receives the characters sent from the terminal program and echoes each one
back. In this way, the user has feedback that each character is being received properly. (Be
sure and turn off the terminal “local echo’ otherwise you will get two characters on the screen
FFOORR EEWEERRYY OONNEE YYOOUU TTYYPPEE!!)

' For more information on 6809 assembly language programing, refer to the book "Programming the

6809" by Rodnay 2aks and William Labiak, Sybex, Inc. 2021 Challenger Drive, #1008, Alameda, CA 94501. (415)
523-8233 or (800) 227-2346. Telex 336311. Library of Congress Card Number 82-50621, 1SBN 0-89588-078-4.

Page 8

NCMZ 1799 System Manual

So, the IBM PC runs a terminal program that sends ASCII characters to the 1799, and the 1799
sends characters back to the terminal program. If you are using NC799COM.EXE the
connection between the 1799 module PORT A and the computer is via COM1. Refer to
Appendix G for pinouts of the proper cable to use.

You may be wondering if there is a way to stop the execution of your program. Perhaps your
program isn’'t working properly and you want to make a change to the code. Or perhaps it is
working, but you want to save the program to disk (you can only SAVE, LOAD and VERIFY
while the module is in the PROMPT mode, not the RUN mode).

Well, there are three ways of stopping the module. One way is to have the program stop itself
(see the END statement). Another way is if the module executes a statement that causes an
internal error (divide by 0, overflow, invalid character, etc.). The third way is to send a special
character to the 1799. That special character is called the ¢ BREAK> character. A <BREAK>
character is NOT the same thing as pressing < CTRL>-<BREAK> key sequence on the IBM
PC keyboard. Rather, the <BREAK> is generated by the terminal program. (Crosstalk uses
the END key, NC799COM uses the <CTRL>-C).

After the 1799 module receives this key sequence, it returns to the PROMPT mode and prints

READY
#

Modifying a Program
From the READY prompt, you can read and change variables.

#PRINT A,B,C
#A=T

#PRHEX A(100)
#100 PRINT ‘Hello’

prints the value of A, B and C)

change Ato 7)

print the hexadecimal value of A(I00))

make line 100. If line 100 didn't exist, it is created. If line 100 existed,
then this new line replaces it)

Py

Clearing Memory
#NEW (erase all memory)
Displaying Program

#LIST (display all program statements)

NCMZ 1799 System Manual Page 9

1.2

Writing your first program

(Enter all commands and statements in UPPER CASE.)

<CTRL>C (Press the <CTRL>C key sequence)
#NEW

READY

#100 INPUT ‘ENTER YOUR FIRST NAME *;A$
#110 INPUT “ENTER YOUR LAST NAME *;B$
#120PRINT

#130 PRINT ‘HELLO A$:; *.B$

#140PRINT

#150 PRINT ‘MY NAME IS NCMZ-1799

#160 END

#BUN

Type this program into your 1799 and see what it does. Experiment by changing some of the
lines in the program. If you are using the NC799COM.EXE terminal program, save your
program to disk by pressing the <F8> key, entering TEST, and then entering the drive letter
you want to save the file to (for drive ‘A” type A not A:). If you mistype the filename, press
the <CTRL> C key.

If you make a typing error, just retype that line again. Any new line that has the same
linenumber as a program statement already in memory will replace that old program statement.

Type NEW to totally erase a program from memory.

Type LIST to view the entire program.

Type LIST 110 to view line 110 only.

Type LIST 11 O-l 30 to view lines 110 through 130, inclusive.

Always NEW memory before loading a program from disk. If you don't the new program will
not completely erase the old program. It will, however, overwrite program statements that have
the same line number. If your new program uses line numbers that are completely different

from the line numbers already in memory, the new program will ‘append” to the old one and
both programs will coexist.

Page 10

NCMZ 1799 System Manual

1.3

Multitasking
You may have up to 4 programs running simultaneously in the same 1799.

These programs may be totally separate, or they may share data with one another. Data is
shared between programs using the ‘Global” variables (see Chapter 5. BASIC Variables).

#NEW

READY

#100 TASK 1000

#110 INPUT ‘ENTER FIRST NUMBER ;A
#120 INPUT ‘ENTER SECOND NUMBER":B
#130 PRINT ‘SUM = “A+B

#140 GOTO 110

#1000 LEDON

#1010 SUSPEND 100

#1020 LEDOFF

#1030 SUSPEND 100

#1040 GOTO 1000

#BUN

This program prompts for two integers (+32767 to -32768 range) to be entered. It will add
these two numbers together and print the answer. Meanwhile, a second program will flash LED
1 on and off continuously as long as the program is running. If the first program crashes due
to an error (try entering 70000 as one of the numbers... you get an overflow error), the light
stops flashing.

For more information on the TASK statement see page 64. Also see SUSPEND (page 63).

