
NCMZ 1799 System Manual

Appendix K Application Notes

Page 99

1. There is a way to monitor the line number that is currently being executed by each of the tasks.
A ‘line pointer” is located at the addresses $OA (MSB) and $OB (LSB) for the first task. This
pointer ‘points’ to a location in RAM, containing the line number. The pointer of each additional
task is located $100 higher.

MSB
Task 1 Linepointer $OA

@
SOB

Task 2 Linepointer $lOA $lOB
Task 3 Linepointer $20A $208
Task 4 Linepointer $30A $30B

If you attempt to monitor a linepointer for a task within that task, you will always return the same
value.

This function is similar to a BASIC TRACE statement (TRON /TROFF). Unlike the TRONflROFF
statement (which shows every statement that is executed), the next example program will only
T h i s f u n c t i o n i s , h o w e v e r ,samole, every few timer ticks, the current line pointer in TASK 2.
useful in displaying the linenumber of a statement that is repeatedly executed (hung statement,
or in an infinite loop, for example).

Example: (monitor the linenumber of the second task)

10 TASK 100
20 POKE($FG,l) Set unsigned calculations
30 A=256*PEEK($l OA)+PEEK($l OB) Get pointer to second task
40 B=256*PEEK(A)+PEEK(A+l) Get line number
50 PRINT B Print line number
60 GOT0 30
100 REM Second Task

2. You can restart the program from within the program. Certain precautions must be taken to
prevent the watchdog timer from tripping. This requires POKEing some assembly code that
disables interrupts before jumping to the 6809 restart vector.

10 POKE ($C3Fl ,$l A)
20 POKE ($C3F2,$50)
30 POKE ($C3F3,$6E)
40 POKE ($C3F4,$9F)
50 POKE ($C3F5,$FF)
60 POKE ($C3F6,$FE)

Disable Interrupts
Disable Interrupts
Jump indirect to Restart

I
I
.

xxxx EXEC $C3Fl Restart program

If only one task is programmed, it is not necessary to disable interrupts, In that case it is only
necessary to jump to the 6809 Restart Vector. After PEEKing the addresses $FFFE (MSB) and
$FFFF (LSB) you will have the restart vector for the microprocessor. For convenience (since
additional tasks may be programmed), it is recommended that the interrupts are disabled.

Page 100 NCMZ 1799 System Manual

3. A BASIC PROM can be modified so that the interpreter ignores a <BREAK> character. The
<BREAK> is normally used to stop a running program. However, it may be desirable to stop
a running program to examine variables or to make changes. This can be done with the END
statement. The END can be made conditional on certain items (such as entering a password):

100 TASK 10000 REM point to concurrent task
110 SUSPEND 10 :REM blink LED 1
120 LEDON
130 SUSPEND 10
140 LEDOFF
150 GOT0 110 :REM end of blink routine
10000 REM ----- TASK #2 ----
10010 REM
10020 PORT A 9600,N,8,1 :REM Point to PORT A (plug terminal here)
10030 IF LOC > 0 THEN GOT0 10100 :REM any characters in buffer?
10035 LED20N :REM light LED 2
10040 SUSPEND 50 :REM no, wait one second
10050 GOT0 10030 :REM and check the input buffer again
10100 REM ---- character in buffer ----
10105 LED20FF :REM extinguish when processing password
10110 SUSPEND 250 :REM window of opportunity is 5 seconds
10120 IF LOC > 5 THEN GOT0 10500 :REM 5 character plus <CR>
10130 GET A$,LOC :REM too few, purge buffer
10500 REM --- minimum number of characters received ----
10510 GET A$,LOC :REM fetch those characters
10520 V=INSTR(A$,‘EJECT’) :REM the password is EJECT
10530 IF V>O THEN END :REM yes, correct password entered
10540 GOT0 10030 :REM no, test for more data

Many times PORT A will already be in use by a terminal. In that case, the Password code must
be ‘interleaved’ with the normal terminal servicing code.

100 PORT A :REM look at port A
110 IF LO&O THEN SUSPEND 1O:GOTO 110 :REM wait for characters
120 REM Wait for two characters to be received
130 IF LOC<2 THEN SUSPEND 1 :GOTO 130
140 GET A$,2 :REM get those two characters
150 REM ---- Set up a test loop ----

IF A$(l)=‘l’ THEN GOSUB 1000 :REM if ‘1’ entered, do this160
170 IF A$(1)=“2’ THEN GOSUB 2000 :REM if ‘2’ entered, do this
180 IF A$(1)=‘3’ THEN GOSUB 3000 :REM if ‘3’ entered, do this
190 IF A$(l)= 3 THEN GOSUB 4000 :REM if cCTRL>-C, process password
200 GOT0 160 :REM continue looping

4000 REM --- Process a password request ----
4010 TM=0 :REM zero out timer
4015 PRINT ‘PASSWORD - ‘; :REM prompt for password entry
4020 IF LOC = 8 THEN GOT0 4050 :REM wait for 8 character password
4030 IF TM > 200 THEN RETURN :REM times out after 4 seconds
4040 GOT0 4020 :REM keep looking for 8 characters
4050 GET A$,8 :REM fetch these 8 characters
4060 IF A$=“PaSsWoRd’ THEN PORT A:END :REM stop, password correct
4070 RETURN :REM password incorrect, continue

NCMZ 1799 System Manual Page 101

4. The module can be programmed to attempt an EPROM restart following a watchdog timer trip.
This feature may be useful where the module is used as a Modbus or IAN translator, since
a loss of communications with the module may present a problem. Of course, pressing the
reset button will reset the module, but perhaps the button is not easily accessible.

Warning!

Under no circumstances should this feature be used if the 1799 module is performing control
(manipulating outputs). A watchdog trip may indicate an internal failure resulting in
unexpected results. The user is cautioned against using this feature for any application
where a failure of the 1799 module may result in equipment damage or present a safety
hazard to personnel.

To accomplish this, read the NMI (non maskable interrupt) vector located at addresses $7FFC
(MSB) and $7FFD (LSB) (Note: $7FFC and $7FFD locations in PROM correspond to CPU
memory locations $FFFC and $FFFD). This will point to a location in the EPROM. Starting at
that location change the next 5 bytes to the following new values:

+o = $lA Disable Interrupts
+1 = $50
+2 = $9F Jump Indirect to restart
+3 = $FF
+4 = $FE

In version 1.5 of BASIC, the NMI vector in the PROM points to memory address $E775. Since
a PROM address is $8000 less than a CPU address, we subtract $8000 from $E775. The result
($6775) is where we patch in the new code:

$6775 =
$6776 =
$6777 =
$6778 =
$6779 =

New Old (VI.51
$lA $86
$50 $10
$9F $C6
$FF $08
$FE $FD

Page 102 NCMZ 1799 System Manual

NCMZ 1799 System Manual

Appendix L Modbus Emulation V3.3

Page lW

An optional Modbus slave emulation package can be added to the BASIC interpreter. The Modbus
runs independently of the BASIC. For information on Modbus Master capability refer to the MBRCV
(page 52) and MBXMT (page 53) functions built in to the BASIC interpreter.

Warning

The Modbus interpreter supplied with the NCMZ-1799 module will NOT be robust enough
for industrial applications unless the final program is burned into the Executive EPROM and
the ‘Break Detect’ function disabled. If these actions are not taken, the Modbus executive
will be susceptible to electrical noise, and may stop running. It would then be necessary
to connect a terminal and issue a RUN command or (possibly) reload the program.

This document describes the MODBUS SLAVE EMULATION communications package that can optionalfy
be supplied with this module. BASIC is the resident software for the module. The emulation is invoked
by a few BASIC Executive statements.

MODBUS messages of up to 125 words are supported. The functions implemented are 1, 2, 3, 4, 5,
6, 7, 8 and 16 are described in more detail in section L.6 of this appendix.

The emulation software will convert MODBUS messages, coming in on one dedicated NCMZ port from
the MODBUS LINK, into standard Westinghouse 6-byte protocol PROGRAM LOADER style messages
relayed to the PLC on a second dedicated port. Since the NCMZ to PLC connection is dedicated with
regards to which NCMZ port is used, two separate forms of the MODBUS SLAVE EMULATION have
been written:

SP1799 v3.3c NCMZ Port B - MODBUS LINK interface
NCMZ port C - PLC interface

SP1799 V3.3D NCMZ Port C - MODBUS LINK interface
NCMZ Port D - PLC interface

In addition to the MODBUS emulation software, several port sharing routines can be started as part of
either option. One routine will designate a Program Loader Interface on the NCMZ module to time
share the NCMZ/PLC interface. The Program Loader port supports PROGRAM LOADER Block Read
and Block Write messages of up to 64 words, as well as all conventional 6-byte messages.

The drawing shown on the next page (‘Modbus with Port Sharing of Program Loaders) demonstrates
possible ways of connecting field devices to the 1799 module. Notice that the connection between the
1799 and the PC1200 is via the RS-485 twisted pair. Therefore the Modbus PROM option is V3.30.

Another drawing (Port Sharing Firmware Option) shows the 1799 module with Modbus V3,3D, but all
ports are designated as Westinghouse Program Loader ports. No ports are configured as Modbus
ports.

In addition to the port share and Modbus capability, two more routines are available to allow serial
communications with the Programmable Controller from your BASIC program. These routines use the

Page 104 NCMZ 1799 System Manual

H OBATraOFAULT

OOC bK
0 RUN

Modbus with Port Sharing of Program Loaders

ort Sharing Firmware Option

same 1799 to PLC link that the port share and Modbus functions use. Therefore this port must be
‘claimed’ by the BASIC program when needed. The link should be ‘released’ after the BASIC program
is finished so that the port share and Modbus routines can process any messages they may have been
stored in the interim.

The first routine will claim the NCMZ/PLC interface port using an EXEC $BEOO. From this moment on,
messages from either the MODBUS LINK or PROGRAM LOADER interface will be saved until the
NCMZ/PLC interface is free again, The PLC interface is released by the second routine (EXEC $BFOO).

These two routines (claim and release) are only useful when the BASIC version 1.4 or greater is
implemented with the Block Read and Block Write functions.

NCMZ 1799 System Manual Paae 105

L.l Hardware Installation

The module must be plugged into an unused slot of the PLC’s I/O rack. The host PLC can be a
PC1 100 or 1200 processor. Proper functioning of the module is independent of its position in the I/O
rack, but for simple cable arrangements the first slot in the main rack is preferred. For more information
on the hardware setup of this module, refer to the NCMZ-1799 Instruction Leaflet and the PC1 100/1200
Systems Manual NLAM-B206 section 3-20,21 on networking and serial port definition.

Page 106 NCMZ 1799 System Manual

L.2 SP1799 V3.3C Option

NCMZ1799

I
Free for user.....
Program Loader protocol

ree For BASIC

NCMZ Port Definition for SP1799 V3.3C

Port A For use by the BASIC program or optional used as a time shared PROGRAM LOADER
port.

Port B Designated as the MODBUS NETWORK LINK or PROGRAM LOADER interface,

Port c The dedicated NCMZ/PLC interface for data access with port A of the PC1 100/1200.
The RS232 interface of PLC’s Port B can be used instead if it is left in the single point
mode.

NCMi! 1799 System Manual

L.2.1 Cascading Port Sharing Modules

Page 107

Version C of the Modbus 3.3 firmware permits cascading 1799 modules. This would allow adding even
more serial ports to the PLC. Be aware, however, that this will result in a reduced throughput to the
PLC.

NOTE

Although the port sharing software supports multiple program loaders on each port, only one
of those program loaders may be displaying ladder in the Monitor Mode. If more than one
program loader attempts to display ladder in the Monitor Mode, the power flow display will
only be correct on the last program loader to display a rung.

I Operation of the logic in the controller is not, however, affected.

Although the port sharing program can be added to existing BASIC program, the port
sharing routine will not be robust enough for industrial applications unless this routine is
burned into the executive PROM and the ‘Break Detect’ function disabled. Failure to do this
could result in a program that stops running

Cascading 1799 Modules

d-1

N
L

PC1200 1
or 0 1ELPC1100 7

5

Page 108 NCMZ 1799 System Manual

L.3 SP1799 V3.3D Option

NCMZ1799

I
Free for user........

/

LROGRAM LOADER
Program Loeder protocol ree for BASIC

MODBUS NETUORK

NCMZ Port Definition for SP1799 V3.3D

Port A

Port B

PROGRAM LOADER interface or may be left free for the user.

Can be chosen to be a PROGRAM LOADER interface, however since the main
PLC-program loader interface is not used it may be redundant and port B can be used
for other purposes in your BASIC application.

Port c

Port D

Designated as the MODBUS NETWORK or PROGRAM LOADER interface.

The SP1799 V3.3D package uses the modules port D (RS485) interface as a dedicated
data access with port B of the PLC. Port A of the PLC is not available in RS485.
Special considerations must be taken to connect the module and PLC:

a)

b)

c>

4

e)

9

Mode switch on PLC-processor board must be left open (processor to single
program-loader position).

Interconnect points 13 (CTS Port B) and 22 (DTR Port B) on the 25pin
communications interface of the host PLC. If a PC1200 is used, this step is not
necessary. However, a Configure Port (CP) function must be used. Set the 16th
bit of the CONFIGURE register high (disables CTS testing). Refer to Appendix
J (Troubleshooting) for more information.

Connect pin 17 of the 25-pin communications interface of the host PLC with pin
2 of the front edge connector of the module (TXRXA).

Connect pin 15 of the 25-pin communications interface of the host PLC with pin
3 of the front edge connector of the module (TXRXB).

Connect pin 11 of the 25-pin communications interface of the host PLC with pin
4 of the front edge connector of the module (SYNCA).

Connect pin 24 of the 25-pin communications interface of the host PLC with pin
5 of the front edge connector of the module (SYNCB).

NCMZ 1799 System Manual

14 Resident Software and Modbus Emulation Activation

Page109

The BASIC interpreter is the resident software of the module. The MODBUS emulation software is
added to the resident EPROM as an option and runs as a background task from an executive call. To
invoke the MODBUS emulation, a small basic program is required. The minimum program that is
needed, is given below.

10 AUTO ON This will automatically start the program after a power cycle
20 PORT B 9600,N,8,1 Sets MCOBUS parity and baud rate
30 PORT C 9600,0,&Z Sets PLC port parity and baud rate
40 EXEC SBOOO Start MODBUS emulation software
90 SUSPEND 100:GOTO 90 Endless loop

Once the emulation is running, the NCMZ to PLC interface is dedicated and cannot be redefined.
The interface link can be shared by either a program loader or by the BASIC (V1.4 or greater) NCMZ
user program.

On power up, the module will first read the parameter table from the PLC (locations 8200 - 821F Hex),
This table contains data about number of discrete I/O’s, the number of register I/O and Holding Register
usage and it is used to check the validity of addresses coming from the MODBUS master, In addition
the contents of HR5 is read, which holds the RTU number of this Modbus slave. During this start-up
procedure, status LED 2 will flash. Upon completion, the LED will go steady.

In the BASIC program from line 50 and following, an additional BASIC program may be entered. In the
~~1799 V3.3C option, only Port A and Port D are available to BASIC, since the other ports are assigned
to the MODBUS-emulation. Like wise the SP1799 V3.3D option has Port A and Port B available for
BASIC.

Page 110 NCMZ 1799 System Manual

L.5 Port Sharing of NCMZ to PLC Serial Interface Link

Since the MODBUS slave emulation software uses one of the PLC ports it is often desirable to time
share the port with another device connected to the Module. To this end, an executive call from BASIC
can designate Port A as a programmer port for the host PLC. If a 6-byte program loader message is
then received, this message will be sent via Port C to the PLC and the answer is returned to Port A
via a port sharing technique. The earlier described program must have the following added:

50 SUSPEND 500

60 PORTA 9600,0,8,2
70 EXEC SBAOO

ALlows interrupting program (using <BREAK>) up to 10 seconds after program
startup.
Sets the programmer port baud rate and parity
Start the PROGRAM LOADER port

Note

You must program a delay of at least 2 seconds (SUSPEND 100) following the EXEC $8000
statement before processing an EXEC $BAOO.

To activate more than one serial port as a program loader port (2 maximum with V3.3C and 3 maximum
with V3.3D), program additional EXEC $BAOO statements.

v3.3c

72 PORT B 9600,0,8,2 :REM Set baud and data format for PORT B
74 EXEC SBAOO :REM Activate a second program loader port on Port B

V3.3D

72 PORT B 9600,0,8,2 :REM Set baud and data format for PORT B
74 EXEC SBAOO :REM Activate a second program Loader port on Port B
76 PORT C 9600,0,8,2 :REM Set baud and data format for PORT C
78 EXEC SBAOO :REM Activate a third progrem loader port on Port B (override Modi~~s)

With software version BASIC VI.4 (and later) it is possible to communicate with the host PLC over a
serial link. In this case using SP1799 V3.3C, the serial link is already established by the connection
port-C c--> Program Loader Interface. It is used by both port B (MODBUS) and port A (Program
Loader). If, for any reason, your BASIC application also requires access to the PLC over a serial link,
this communication link has to be temporarily claimed by BASIC, and released afterwards.

NCMZ 1799 System Manual Page 111

The two routines EXEC $BEOO (CLAIM) and EXEC $BFOO (RELEASE) are available in the form of EXEC
statements. If port C is claimed by BASIC, incoming messages from MODBUS or PROGRAM LOADER
are buffered. If Port C is in use at the moment of CLAIM, the Basic program will wait until port C is
available, and only then return execution to the task. In the example given below the Block Read and
Block Write functions are used in a small additional BASIC program.

90 REM
100 DIM SClOO)
110 PORT C
120 E=O
130 EXEC LEE00
140 BREAD 10,60,S(l),E
150 EXEC SBFOO
160 IF EoO GOT0 120
170 EXEC SBEOO
180 BWRIT 100,60,SC1),E
190 EXEC SBFOO
200 GOT0 110

comnunicate within BASIC over sama Port C
initialize buffer
comnunicate via Port C
reset error flag
claim Port C
read HR(10) to HR(69) into S(1) to SC691
release Port C
test if block read is successful

write registers to HRClOO) to HR(160)

If you just wish to use this module as a port sharing module (no Modbus support), then a simplified program can
be used:

100 PORT D 9600,0,8,2 set baud on PORT D to 9600, parity to odd, data bits to 8 and 2 stop bits
110 PORT A 9600,0,8,2
120 EXEC SBAOO activate PORT A as a shared program loader port
130 PORT B 9600,0,8,2
140 EXEC SBAOO activate PORT B as a shared program loader port
150 PORT C 9600,0,8,2
160 EXEC SBAOO activate PORT C as a shared program loader port
170 SUSPEND 100:GOTO 170 loop here

Program this statement into the PC1200 (or 1100):

Make sure the MODE switch on the PC1000 is set to ‘SINGLE POINT’ and that the RS-485 termination
resistors switches are set to ALL CLOSED.

Make sure that there is no UNIT ADDRESS (UA) function in memory.

Make sure that the 4 wires (TxRx A, TxRx B, Sync A and Sync B) are connecting the NL-10758 to the
NCMZ-1799.

Cycle power to the PLC after all programming or DIP changes have been made.

Paae 112 NCMZ 1799 System Manual

L.6 Modbus Overview and Emulation Details

The Modbus communications network was designed to provide a simple means of connecting slave
controllers to a master controller for the purpose of distributed control and data acquisition. The
simplicity of the protocol has made it a popular choice among many control and instrumentation
vendors seeking a ‘common” language.

The Modbus protocol consists of a slave address, function code, data, and error checking. The master
controller issues a command to which the appropriate slave responds.

The following describes the message parameters:

Address
The address field contains the address of a specific slave (l-255) as assigned by the user. Each
slave must be assigned a unique address. Only the addressed slave will respond to a message. The
response message contains the address of the slave which issued it.

A broadcast message uses a slave address of ‘0’. All slaves on the network interpret the instruction
and take action, but do not issue a response message. Only function codes 5, 6 and 16 can be used
with this feature.

Function Code
This field defines the action to be performed. Implemented Functions Codes are 1, 2, 3, 4, 5, 6, 7, 8
and 16. The following table lists the function codes supported by the NCMZ-1799 module and how
they are interpreted.

01 Read Coil Status
Obtains the current status (On/Off) of a group of logic coils. Unrequested coils in the response
message are zeroed.

02 Read Input Status
Obtains the current status (On/Off) of a group of discrete inputs.

03 Read Holding Registers
Obtains the current value in one or more Holding Registers. A maximum of 125 registers is
allowed per request.

04 Read Input Registers
Obtains current value in one or more input registers.

05 Modify Coil Status
Sets logic coil to a state of On or Off. Note the change is made to the output status table
and NOT THE FORCE TABLE in effect overriding the force table. Although this function will
write to the coil regardless of the status of the force bit, the coil will be immediately overridden
by the ladder program. If you wish to actually override the force state, you will need to locate
the address of the force bit in the PLC memory (refer to the Westinghouse PLC Communications
Manual).

06 Modify Register Contents
Write information to one register. The Module does not limit writes to below HRRU, therefore
the user should use extreme caution when writing to any memory location other than Holding
Registers.

NCMZ 1799 System Manual Page 113

07 Read Exception Status
The low order byte of HR6 is read. The contents of HR6 may be set by the Ladder Program.

08 Loop Back Diagnostic
Diagnostic test message which can be used to test communications. The response message
is identical to received message. The test message must be the full length of a normal
command (8 bytes)

16 Preset Multiple Registers
Information can be written to Multiple Holding Registers (up to 125 at a time) with one
command.

Data
The data field contains information needed to perform the specific function. This may be values,
addresses, or limits, For example, the function code Read Coils (01) requires data of starting coil
number and quantity.

Error Check
This field contains the error checksum which is used to determine if a transmission has been received
correctly. The Cyclical Redundancy Check (CRC) is used for the RTU format used in the 1.

The package emulates a MODBUS slave in RTU-mode, ASCII mode is not available. The unit address
is defined by HR(5) in the PLC. Baud rate and framing have to be set by the BASIC PORT statement,
Port definitions are given in section 2.0 of this Manual.

Status LED LED 2 is used as diagnostic indicator

Cont. on - system OK
Flashing fast - start-up sequence
Flashing slow - errors data received from network

Special note

Although the emulation supports messages up to 125 points from the MODBUS network, it should be
noted that the 6-byte protocol only supports messages up to 64 words. In case of messages above
64 points, the incoming MODBUS message is split up into two PLC- messages. The response message
consequently contains data, that is derived from the PLC in different ladder scans with a resulting
slower response time.

Exception Response

Exception error codes are generated by the slave if the master requests an invalid point, quantity or
function. In the response message, the most significant bit of the function code is set. The data field
contains a one byte code, as described below:

code description
01 Invalid function code
02 invalid address
03 Invalid quantity requested
04 Communication error between module and host PLC

I
1

i

Page 114 NCMZ 1799 Svstem Manual

L.8 Modbus Message Reference

Leaend
SA - Slave Address (valid 1 - 247)
AH - Address (high byte of reference number)
AL - Address (low byte of reference number)
BC - Byte count (number of bytes in data portion of message)
CH - Coil number (high byte of number)
CL - Coil number (low byte of number)
DH - Data Sent (High byte)
DL - Data Sent (Low byte)
EH - Error Check (High byte of CRC)
EH - Error Check (Low byte of CRC)
Dx - Data bytes sent or received
HH - High byte of number of Holding Registers
HL - Low byte of number of Holding Registers
IH - High byte of number of inputs
IL - Low byte of number of inputs
RH - High byte of number of Input Registers
RL - Low byte of number of Input Registers
ST - Coil Status (low byte of HR0006 is read with this exception status message)
VH - Value High (FF- ON, 00- OFF)
VL - Value Low (always set to 00)
xx - Any value (00-FF)

Read Coil (Output) Status (Function Code 1)

Sent-> SA 01 AH AL CH CL EH EL
Rvd <-SA 01 BC Dl D2... Dn EH EL

Dl - First byte of coil status’s returned. Low order bit is first coil, etc.

Read Input Status (Function Code 2)

Sent-> SA 02 AH AL IH IL EH EL
Rvd <- SA 02 BC Dl D2... Dn EH EL

Dl - First byte of input status returned. Low order bit is first input, etc.

Read Holding Registers (Function Code 3)

Sent-> SA 03 AH AL HH HL EH EL
Rvd <- SA 03 BC Dl D2... Dn EHEL

Dl - High byte of first register returned
D2 - Low byte of first register returned
D3 - High byte of second register returned .,..
Dn - Low byte of last register returned

NCMZ 1799 System Manual

Read Input Registers (Function Code 4)

Page 115

Sent-> SA 04 AH AL RH RL EH EL
Rvd <-SA 04 BC Di 02,s. Dn EH EL

Dl - High byte of first register returned
D2 - Low byte of first register returned
03 - High byte of second register returned
Dn - Low byte of last register returned

Write Single Coil (Function Code 5)

Sent-> SA 05 AH AL VH VL EH EL
Rvd <- SA 04 AH AL VH VL EH EL

Write Single Holding Register (Function Code 6)

Sent-> SA 06 AH AL DH DL EH EL
Rvd <- SA 06 AH AL DH DL EH EL

Read Exception Status (Function Code 7)

Sent-> SA 07 EH EL
Rvd <- SA 07 ST EH EL

Loopback Test (Function Code 8)

Sent-z- SA 08 xx xx xx xx EH EL
Rvd<-SA06xx x x x x xxEHEL

Preset Multiple Registers (Function Code 16 decimal)

Sent-> SA 10 AH AL HH HL Dl D2 . . . Dn EH EL
Rvd <- SA 10 AH AL HH HL EH EL

Dl - High byte of first Holding Register written to remote
D2 - Low byte of first Holding Register written to remote
Dn - Low byte of last Holding Register written to remote

