PC700/900/1100 Communications Interface

Application Note Revision 1.2

December 18, 1985

Westinghouse Electric Corporation

V1.2 18Dec85
V1.1 14Dec85
V1.0 12Dec85

Table of Contents
Section Title

1 Westinghouse Communications Protocol Introduction
— how to talk to Numa-Logic 700/900/1100

2 Communication/Synchronization of PC700/900/1100
— message integrity, error detection

3 Communication/Synchronization of PC1100 Multi-Drop
— using PC1100 with channel B configured for RS-485

4a Summary of RS—-232 signals of PC1100

4b Summary of RS-232 signals of PC700/900
5 PC1100 Network using Modems

6 PC700/900/1100 Communications Commands

— all the opcodes

7 Westnet II Communications Commands
— all these opcodes

8 PC700/900/1100 Memory Map
g PC700/9800/1100 Parameter Table
10 IBM PC Communications via BASICA

— how to write your own programs to talk to Numa—-Logic

11 Apple 1[+ Communications via Super Serial Card
— use the Apple][computer also

12 Radio Shack TRS—-80 Model II Communications
— or the TRS-80

Appendix Title
A IBM PC Communication Sample Program - PCTEST. BAS
B IBM PC Communication Sample Program — KEY.,BAS
C IBM PC Communication Sample Program - MESGEN, BAS
D Assembly Language Calls from IBM BASICA
E Serial Port Wiring Diagrams
F Apple 1{+ Communication Sample Program -~ STATUS
G Apple][+ Communication Sample Program - ASCII1
H Apple 1[+ Assembly Language Calls

Section 1: Westinghouse Communications Protocol Introduction

S

The following discussion will help to describe the protocol
necessary to communicate with a PC using one of the following
methods:

- Westnet II Data Highway
- PC1100 Data Sidewalk

— Direct to Program Loader port

The Westnet II Data Highway is a token passing network that can
interconnect up to 254 programmable controllers, color CRT's,
computers, or mass storage devices on one 3 mile coaxial cable.

The PC1100 data sidewalk is built-in network of the PC1100 that
permits up to 127 programmable controllers with one supervisory
computer on one RS-232 based network.

Direct communications with a programmable controller is possible
simply by connecting a computer to the program loader port found on
the PC700, PC900 or PC1100.

A computer can communicate with a programmable controller by sending
certain messages from the computer's serial port to the PC though
the PC's program loader port. The programmable controller will
examine the message and return the requested data to the computer.
The program loader port is a standard RS-232 serial port. The
computer can connect directly to the serial port or could be
connected via modems or a network like Westnet II. Appendix E shows
how to build your own cables for connecting your computer to the
programmable controller, modem or Westnet II Programmable Controller
Interface (PCI).

/
g

Messages sent to the programmable controller (PC) must conform to
the proper format. If a message is improperly constructed,
the remote PC will ignore it and return an error response.

If the computer is communicating to the programmable controller via
the Westnet II data highway or the PCl1100 data sidewalk, only the
addressed PC will respond to a message. Communications via these
networks is discussed in sections 3 (PCl1100 data sidewalk) and
section 7 (Westnet II Data Highway).

Most messages sent to the PC are six bytes long. The remote PC will
wait until all six bytes are received before issuing a response.
Since it is possible that noise on the communications line may
insert or delete parts of the message, error detection is built into
this communications protocol. This protocol is called "6 byte".

Release 1.0 1 -1

The error detection includes:

- parity checking of each byte

; - checksum of each message

) - allowable range checking of each byte
- byte counting
-~ acknowledgment of message

A remote PC expects most messages to contain six bytes. If the
remote PC already has a byte or two in its receive buffer due to
noise, then it only requires the number of bytes necessary to
complete the six byte message. The other bytes from your computer
will be discarded. Since there is no way to know how many bytes are
in the receive buffer at any instant, a method must be available to
clear the remote PC's communications buffer. This method is called
"Synchronizing".

Under normal operating conditions, synchronization is only necessary
if the remote PC returns error codes or does not return any data in
response to a message.

Synchronization is not necessary when communicating via the Westnet
II data highway since the programmable controller interface (PCI)
attempts to synchronize with its connected programmable controllers.

See "Section 2 : Communication/Synchronization with PC700/900/1100
processors" for a description of the method of communicating
directly with a PC from a computer.

> See "Section 3 : Communication/Synchronization of PC1100 Multi-Drop
Network" for a description of the method of communicating via the
PC1100 data sidewalk.

See "Section 6 : PC700/900/1100 Communications Commands" for a
description of the valid "6 byte" messages.

Release 1.0 1 - 2

Section 2: Communication/Synchronization with PC700/900/1100

processors

To communicate from the serial port of your computer to the serial

port of the PC:

1.

2.

Transmit from your computer's serial port to the programmable
controller a valid "6 byte" message.

Wait for a response from the programmable controller. If no
response is heard within 2 seconds or an error code 1s returned
(see Section 6 : PC700/900/1100 Communications Commands), attempt
to "synchronize" with the programmable controller.

Synchronize with PC by sending a null byte (00 Hex) while
continuously looking for a response from the PC.

If no response detected after 1 second, send another null byte.
Continue in this manner until a response is received. If no
response is received after 6 nulls have been transmitted, signal
that a communications failure has occurred.

If a response from the programmable controller is detected, the
return message will look like one of the following:

6 bytes returned:
XX XX XX XX XX XX
where:
XX - undefined bytes (value not important at this time)

This is the normal response message from the programmable
controller if no errors were detected. The fact that you
received 6 bytes means two things:

a. baud rates on the computer and programmable controller
match.

b. number of data bits, type of parity and number of stop
bits are probably correct. (Certain mismatches may stilil
occur in data bit selection, parity selection or stop bit
selection that will still allow a correct response to be
returned from the programmable controller. Transmit
various valid 6 byte messages to the remote PC and observe
the responses. If each message returns the correct
response, you are synchronized with the PC.)

2 bytes returned:
XX XX

This response message means that the programmable controller
detected an invalid message sent to it. Your program may examine
(parse) this returned error message. This message contains
information as to the source of the error. See "Section 6 :
PC700/900/1100 Communications Commands", or refer to the

Release 1.0 2 -1

Westinghouse Communications Manual; Catalog Number NLAM-B58,

5 bytes returned:
XX XX XX XX XX

This response message indicates that your computer was looking
for a message length longer than that sent by the programmable
controller. If the programmable controller is configured for 8
data bits and no parity, while your computer is looking for 8
data bits and parity, the sixth byte transmitted by the
programmable controller will not include enough bits to complete
a byte. Your computer will think that only 5 bytes have been
transmitted.

1 byte returned:
XX

This response means that the baud rate of the remote PC is higher
than the baud rate of the computer. All of the data bits
returned only seemed like one byte to your computer. Typical
problem when remote PC is set to 9600 baud, while the computer is
communicating at 1200.

/) More than 6 bytes returned:
XX XX XX cesaeoss

This response occurs when the remote baud rate is slower than the
local computer baud rate. Since one character transmitted to the
remote PC is interpreted as less than one character by the remote
PC, it may take several attempted messages to the remote PC
before ANY response is heard. When the response finally returns,
the returned message is seemingly very large since one character
at the remote PC is transmitted slower (longer message).

khkhkhkhhkkhkhkhkhhhhhdhhkhrhhhhhhhhhhhhhkhhhhhhhhhhkhhhhhkhhkhkhhhhhhhdbhhhhkhk

Note: If system is configured as a polled multi-drop configuration
utilizing the Unit Address function, the synchronization procedure
is different. Refer to "Section 3 : Synchronization of PC1100

Multi-Drop Network".
hkhkhkkkhkhhhhkhhhhhhhhkhhbhihhhrohhhdhhhhhhhkhdhhhhhhhkhkkhhhkikhkhhhhkhdhhhhdhhdk

Release 1.0 2 - 2

Section 3 : Communication/Synchronization of PC1100 Multi-Drop
Network

The unit address function of the PC1100 series programmable
controller allows up to 128 processors to share a common Master-
Slave network.

There can only be one master on the network with up to 127 slaves.
The master can be either a computer or a PCl100 programmable
controller. If a PCl100 is the master, the PC must be supplied with
the Port Transmit (PT) function. All the PC1100 slaves must be
supplied with the Unit Address (UA) function. A PC1100 with
software revision 2.1 or later meets both these criteria. If the
multi-drop network is to be connected via modems, software revision
2.3 or later is recommended.

PC1100's, V2.1 or later are supplied with two serial channels,
Channel A and Channel B. Channel A cannot be used to connect to the
multi-drop network. Channel A can be connected to the Westnet II
data highway or to a computer/program loader directly. Channel B
can be used to connect to the multi-drop network as either a Master
or as a Slave or it can be configured as another standard serial
port for the Westnet II data highway or computer/program loader.

If Channel B is configured for multi-drop operation and the PC has
the proper Unit Address function programmed in ladder, the port will
- only respond to a properly addressed message. The standard program
) loaders will not be able to communicate with the PC over channel B
. since they do not send the proper "address code" to the port while
channel B is configured for multi-drop.

If it is desired to program over the PC1100 "Data Sidewalk", an
address code must be transmitted over the multi-drop network before
attempting to communicate with that PC. For a description of a
program that runs on the IBM PC that can be used to address a PC on
a multi-drop network, refer to Appendix A. This program can be used
to allow the IBM PC remotely program a PC using the standard program
loader software packages "WESTAPL" or "DOC782".

Channel B is provided on two separate electrical interfaces, RS-232
and RS-485. RS-232 can be connected directly to a computer but is
not suitable for a multi-drop configuration without using an
external modem. RS-485 is suitable for a multi-drop configuration,
permitting up to 32 PC's to be connected over 3 twisted shielded
pairs.

Channel B, RS-232 can be connected via modems or multi-point line
drivers to achieve the full 127 slave PC maximum. Refer to Section
5, "PC1100 Network using Modems" and to Appendix E, "Serial Port
Wiring Diagrams".

Release 1.0 3 -1

The following diagram shows the physical placement of the equipment.

PC 1100 Data Sidewalk

—— Uy S e S m——————— I
! ! !
Fmm Fom—— + S Fem + Fomm e +
! Modem ! ! Modem ! ! Modem !
e S + Fmm te——_— + B L +
! ! !
R R + E e + Fmm——— Fomm +
! PC 1100 ! ! PC 1100 ! ! PC 1100 !
1 1 1 1 ! 1
! PC1 ! ! PC2 ! ! PC3 !
e + o + e +
Master Slave 1 Slave N

1. Communication with a group of remote PC via the Unit Address
Network follows a polled multi-drop scheme. The station
initiating commands is called the master. All other stations are
called slaves. Only one station may conveniently be the master
in a network.

2. The synchronization method is different on the PCl1100 data
”) sidewalk. To synchronize all remote PC's (clear remote PC's

communications buffers) it is necessary to drop the "clear buffer
line" of the each PC. This line is located on the slave PC1100's
serial ports. The master station should drop these lines before
attempting to communicate with any of the slave stations. Once
the line has been dropped, the next command that must be sent is
the "Unit Address" command. This command will be acknowledged
only by the addressed slave. If the addressed slave does not
exist, no acknowledgment will be heard by the master. See
"Appendix E : Serial Port Wiring Diagrams" for a description of
the wiring used to connect PC1100's together in a data sidewalk.

3. The line to drop at the slave PC to clear its buffer depends on
the software version of the slave PC.

Clear Buffer Line

V2.1 - CTS Pin 5

V2.3 (and later) - DSR Pin 6
This line must be pulled low for a minimum of 100 uS. If this
line is pulled low for at least 100 uS, that PC's communication
buffer will be cleared. Appendix E shows a method of wiring
multiple PCl100's together via modems so that a computer can
clear all slave PC's communications buffers simultaneously.

. 4. If using modems, a convenient method of dropping the "clear

} buffer line" is to tie the modem's carrier detect line (Pin 8

’ or pin 6 of the PC1100) to the appropriate "clear buffer 1line"
(either pin 5 or pin 6). If the modem loses the carrier, it will

Release 1.0 3 -2

N’

e 1.0

drop this carrier detect line. By wiring this line to the "Clear
buffer line" of the PC, anytime the carrier is removed from the
communications line, the slave PC's communications buffer will be
cleared.

The master station must be able to control the transmit carrier
through software. This is important since the removal of the
carrier will clear each slave PC's communications buffers and
thereby synchronize the network. The master only drops the
transmit carrier if and only if the next command to be sent is
the "Unit Address" command. If the master inadvertently drops
the carrier during normal communications, a "Unit Address"
command must be sent to re-address the remote PC. See Section 6
"PC700/900/1100 Communications Commands" for a discussion of the
Unit Address Message.

The PC1100 does not support the Unit Address Function opcode on
port A,

Modems can be used to extend the distance between the PC1100's
located on the data sidewalk. If a PC1100 is used as a master,
it must be programmed with the Port Transmit Function. Only the
master is programmed with this function. Only the slaves are
programmed with the Unit Address function. Both master and slave
can be programmed with the Configure Port function if it is
desired to communicate over the network at other than Numa-Logic
standard format (9600 baud, 8 data bits, odd parity, 2 stop
bits). It is not necessary to program a Configure Port command
unless a different communications format is desired. The
Configure Port command can also be used to modify the RTS/TxD
time delay (see the comment 9).

If a modem is used on a Port Transmit master, special care must
be used to wire the modem's RTS lead. The RTS lead is usually
the pin that turns on and off the carrier. As described above
(see comment 4), the switching of the master modem carrier 1is
what synchronizes the network. Wire the modem RTS lead to a 24
VDC output card. A program must be written to pulse low this
lead just before the port transmit statement is activated.

The reason for doing this is to synchronize the network before
the port transmit function activates. This 24VDC output card is
not necessary if the RS-485 loop is used. Refer to the NL-1075
module Instruction Leaflet (I.L. 15753) for information on the
correct wiring of the RS-485 port.

Refer to Appendix E for a description of the method of wiring
modems to the Port Transmit master using a 24 VDC output module.

Note that V2.3 and later requires CTS to be high before
communications can proceed. This allows the use of modem with a
longer RTS/CTS turnaround. Both versions (2.1 and 2.3+) raise
RTS just before transmitting and lower RTS when the message has
been sent. Version 2.1 does not require CTS to be high before
transmitting. Both versions require DSR to be high before a

message can be transmitted. Both versions maintain DTR high
during normal communications as a remote. Both versions pulse
DTR low when that processor is used as a Port Transmit master.
Version 2.3 also provides an expanded Configure Port (CP)
function block in its instruction set. This new function block
is programmed as follows:

e

! e + !
! Enable ! ! CPO00O !
b | [+ PORT F==()=+
! ! 0003 ! !
1 1 ! !
! ! ! !
! ! ! !
! ! CONFIGURE ! !
! ! HROO09 ! !
! ! ! !
! ! ! !
! T + !

Normally, the Configure Port command is used to set the baud rate,
parity, data bit, and stop bit selection of either of the two serial
ports. Note that is the configure port is set to "port 3", the
configure register becomes a two register pair. The register shown
retains the same function as before. The register immediately
preceding that register contains a value from 1 to 128. This value
is the number of program scans the processor walts before

) transmitting data AFTER the RTS line is raised high.

HROO08 Number of scans to delay

HRO0O09 Configuration register. (See PC1100 Advanced Programming
Manual)

10.0nce a Unit Address or Configure Port function is placed in
memory and the enable line is pulsed on, the function can be
deleted from memory and the port will continue to act as if the
functions exist in ladder. If power is cycled or the unit is
"Retested", the port will revert to the default conditions.

If power is cycled and the functions exist in memory, the
processor will find both functions and configure the port(s)
appropriately. The functions do not need to be re-enabled after
a power failure. Just the fact that the functions exist in the
ladder program means that the processor will find them and
configure the ports properly.

11.If a PC1100 fails to communicate with any device, verify that pin
20 of the serial port is high. If not:

1. Remove power from the unit
2. Disconnect the battery from the processor and allow to
sit for several minutes.
3. Power up the processor and verify that pin 20 of the RS-
232 port is high. If it is, communications should
) proceed normally.
) 4, Reconnect the battery and initialize and reload the PC.

Release 1.0 3 -4

Section 4a: Summary of PC1100 RS-232 Signals

Pin Name Description (PC1100 significance)

2 Transmitted Data Data sent from PC to computer

3 Received Data Data received from computer

4 Regquest to Send Raised just before a response/message
is transmitted from the PC

5 Clear to Send V2.1 - If pulsed low for more than
100uS, communication buffer is
cleared.

V2.3+- Must be high before information
is allowed to be transmitted from
the PC

6 Data Set Ready V2.1 - Must be high for data to be
transmitted from the PC
V2.3 - If pulsed low for more than
100uS, communication buffer is

cleared.
7 Signal Ground Signal common for all leads
8 Data Carrier Detect No connection on port B
20 Data Terminal Ready Master ¢ Pulsed low by the PC

for approximately 100 uS
just before the Unit
Address command is sent to
the remote multi-drop
network

Remotes : Always held high

Refer to Section 4b "Summary of PC700/900 RS-232 Signals" for a
description of the method of connecting PC1100's via radio modems.

Release 1.0 4 - 1

g

—

Section 4b: Summary of PC700/900 RS-232 Signals

Pin Name Description

2 Transmitted Data Data sent from PC to computer

3 Received Data Data received from computer

4 Request to Send Raised just before a response/message
is transmitted from the PC

5 Clear to Send Must be high for PC to transmit data

6 Data Set Ready Must be high for PC to transmit data

7 Signal Ground "Signal common for all leads

8 Data Carrier Detect No connection

20 Data Terminal Ready Raised when PC is powered up.

If either pin 5 (CTS) or pin 6 (DSR) are dropped low, the PC will
still receive (buffer) up to 6 bytes of data (up to 13§ bytes for
block write), but will not issue a response until both lines are
high. Any messages sent to the PC before a previous message is
acknowledged are discarded.

For radio modem applications, pin 4 (RTS) can be connected to the
transmitter push to talk (PTT) relay. The transmitter must be
equipped with a signal that says "transmitter enabled"™. This signal
is wired onto pin 5 (CTS) to prevent the PC from transmitting data
until the transmitter is enabled. If the radioc does not have a
"transmitter enabled" line, an external solid state timer can be
used to delay raising the CTS lead. If spare DC I/O on the PC is
available, the RTS lead could be wired to a spare DC input module
and the CTS lead wired to a spare DC output module. See Appendix E,
"Serial Port Wiring Diagrams"™ for more information.

If a radio modem is used with a PCl1100 processor with V2.3 or later

firmware, this delay can be performed internally using the
"Configure Port" command.

Release 1.0 4db - 1

N

Section 5: PC1100 Network using modems

o + S + Four wire/Full Duplex

! ! ! ! Tx +

! Master +2-———————~ 2+ Modem t+-———m——memm—— +

! PC R P 3+ ! Tx - !

! : +20-—— e 4+ Full Aee—emmmmmmee +

! o 5+Duplex ! Rx + ! !

! - ——— 8+ P +

! + 7+ Bell ! Rx -~ ! ! !

! ! ! 202 R st +

! ! ! ! ! ! ! !

e + e + ! ! ! !
! ! ! !

e + R + ! ! 1

! ! ! ! Rx + ! ! ! !

! Slave +2-m - 2+ Modem +———m—————— + ! ! !

! +3-———m———- 3+ ! Rx - ! ! ! !

! 4 4+ e + ! !

! +5— 5+ ! Tx + ! ! ! !

! +H—mmm 8+ e + !

! +7mm e 7+ ! Tx - ! ! ! !

! ! ! e —————

! ! 1 !

e ——— + R +

Note that the connection of the
slave PC's to the modems is shown
for V2.3 or later software.

- v e om

To additional slave PC's

V2.1 software is not recommended
for modem applications.*

Once a programmable controller has been synchronized, normal "6
byte" communications can take place. The term "6 byte" is used
since all commands to the PC (except block write) are exactly six
bytes in length.

Note that the master PC's modem Tx+/Tx- palr is connected to each of

the slave PC modem's Rx+/Rx- pair. Each of the slave modem's
Tx+/Tx—~ pairs is connected to the master modem's Rx+/Rx— pair.

The master PC does not have to be physically placed at one end of

the network but can be located anywhere along the bus.

* Version 2.1 software will work with modems (or multi-point line

drivers) that have extremely fast RTS/CTS turnaround time only.
The main problem with V2.1 is that the V2.1 PC will transmit
regardless of the state of the CTS lead. Once the V2.1 PC has
raised RTS signaling it wants to transmit data, there is no
convenient method of telling the PC that the modem is not ready.
Version 2.3 and later correct this problem by reasslgnlng the
"clear buffer pin" to pin 6 (DSR), and using pin 5 of the PC to
interrupt data transmission from the PC to a modem.

Release 1.0 5 -1

&W/v

N

Section 6: PC700/900/1100 Communication Commands

The PC700/900/1100 programmable controllers all recognize and
responds to, "6 byte" messages. The name "6 byte" comes from the
fact that most messages sent to the programmable controller are six
bytes long.

The messages include a byte telling the PC what this message is
supposed to do. This byte is called the "opcode". The message must
also tell the programmable controller where in the memory of the PC
this function is supposed to be performed. Since the programmable
controller has up to 64K of addressable space, the address portion
of this message must contain 16 bits, or two bytes. These bytes are
called the "address". If the function is writing data into the PC's
memory, part of the message must tell the PC what value is to be
written into memory. Again since memory locations (registers) are
16 bits wide, 16 bits or two bytes must be set aside in our message
to send this data. These bytes are called "data".

Also included is an error byte. This sixth byte is transmitted at
the end of the message. The purpose of this byte is to help the PC
and computer distinguish a valid message from a message corrupted by
noise.

The sixth error-detecting byte is simply a sum of the previous five
bytes.

If the message is somehow corrupted by noise and a few bits are
lost, the checksum calculated by the receiving device will not match
the checksum transmitted. It should be pointed out that a checksum
is not designed to detect transposed digits or inserted nulls.
Transposed digits are detected by comparing the response with the
transmitted message. Transposed digits occur from programming
errors and are not likely to occur as a result of noise. Inserted
nulls are detected by the odd parity detection and by byte counting.

This is an example of a typical message:

The valid opcodes defined at this time are:

- 0000 0000 read a word - 0000 0110 open memory bump
- 0000 0001 write a word -~ 0000 0111 Dblock write

- 0000 0010 search for bit pattern - 0000 1000 close memory bump
- 0000 001l Dbit write - 0000 1001 highway command

- 0000 0100 start monitor - 0000 1010 wunit address

- 0000 0101 Dblock read

Release 1.0 6 - 1

These opcodes are described in greater detailil in the "Communications
Manual", catalog number NLAM-B58.

The address block of the message supports an addressing range of 0
to 65535. A description of the processors memory map is included
later in this document to describe all valid addresses within each
processor.

The data block contains information that further defines the opcode.
In those cases where no further information is needed, these 16 bit
words are described as a dummy bytes.

The checksum is a simple addition of the previous 5 bytes,
discarding any carries past the eighth bit.

After this 6 byte command is transmitted to a synchronized PC, the
PC will respond in one of two ways, with a response indicating
message received, understood, and executed or with a response
indicating some error condition was detected.

The following examples show the proper format of some typical
messages sent to a programmable controller.

Read a word from the PC
Example : read location 8081 Hex from the PC memory

The only information required of a "read word" command is the opcode
and the address inside the PC to be read.

Transmit the following sequence to the PC:

1st byte 0000 0000 op code (read word)

2nd byte 1000 0001 1lower byte of address in PC memory
3rd byte 1000 0000 upper byvte of address in PC memory
4th byte 0000 0000 dummy byte.

5th byte 0000 0000 dummy byte

6th byte 0000 0001 checksum

If the 6 byte sequence is received without error (framing, overrun,
parity, etc. See description of error codes later in this section),
then the system will echo back the following:

lst byte 0000 0000 opcode

2nd byte 1000 0001 1lower byte of address in PC memory

3rd byte 1000 0000 upper byte of address in PC memory

4th byte XXXX XXXX lower byte of data found at that location
5th byte XXXX XXXX upper byte of data found at that location
6th byte XXX XXXX checksum

Write a word

A "write word" message requires the opcode, the location to write
the data, as well as the data to be written. These three pieces of

Release 1.0 6- 2

information are all transmitted in the same message.
Example : write the value CO030 at memory location 80A0 Hex
Transmit the following sequence to the PC:

1st byte 0000 0001 op code

2nd byte 1010 0000 lower byte of address in PC memory
3rd byte 1000 0000 wupper byte of address in PC memory
4th byte 0011 0000 1lower byte of data to be loaded
5th byte 1100 0000 wupper byte of data to be loaded
6th byte 0001 0001 checksum

The processor will echo a write statement back to the sending unit
exactly as received. This allows the sending unit to error check the
data received to confirm that indeed the correct address and data
were received.

Users may write programs for their computer to emulate this
protocol. A program would load these values into a buffer,
calculate a checksum, then transmit the 6 byte string out the serial
port. A few milliseconds later a response from the remote PC should
be heard. The program should continuously test the receive buffer
for characters (1 second timeout), confirm checksum integrity on the
received string, and unpack the embedded information found in the
received data.

If a PC detects an error, rather than echoing back what was received
(6 bytes), it will instead send back only two bytes:

1st byte XXXX YYYY
2nd byte (one's complement of lst byte)

where:
XXXX - error code
YYYY - received OP code

The second byte is the one's complement of the first byte (all bits
are inverted referenced to the first byte). If the processor sends
two bytes in response to a message, but the two bytes are not the
one's complement of each other, one of the following situations may
have occurred:

1. The number of data, parity, or stop bits do not match between
the computer and the programmable controller.

2. Baud rates do not match.

3. Severe noise on the line is corrupting the error response.

The following error codes are defined at this time:

0000 command implemented with no errors
0001 attempt to write ladder or parameter table data with key in
program protect position
0010 invalid command OP code (verify that processor being used
Release 1.0 6 - 3

. J
e

R

supports the requested opcode. Some processors do not
support block read, block write or unit address)

0011 checksum error (check program framing)

0100 command overrun (check program framing, PC was not able to
execute previous command before next one received. This
error can occur if part of the next message is transmitted
before the previous message was acknowledged.

0101 command aborted

0110 UART overrun (check noise, matching of both clocks on block
read/write command)

0111 invalid address (an attempt was made to write to memory that
does not exist or is otherwise protected.)

1000 UART framing error (check noise, data formats, parity
selection, baud rates)

1001 UART parity error (check noise, data formats, parity
selection, baud rate selection

1111 Data Highway error (execute a "read highway status“ command

to determine cause of error). Data highway communications is
discussed in Section 7, "Westnet II Communications
Commands".

If an error code is received, try sending the command one more
time. If the error persists, attempt a synchronization procedure.
If communications cannot be verified following the synchronization
procedure, a "communications failure" message or flag should be
transferred to the calling program. Be sure and transfer the upper
nybble of the first byte received (shows if remote PC detected the
error) or some other descriptive information from your program (if
local error) to assist in troubleshooting the communications link.

The standard asynchronous Numa-Logic data format is transmission
with 1 start bit, 8 data bits, 1 odd parity bit, and 2 stop bits at
9600 baud. This can be changed via jumpers to fit other system
requirements though. The PC1100 supports a ladder function
(configure port) that permits changing these parameters through
software.

Release 1.0 6 - 4

Summary of Point to Point Communications Sequences

The following list gives a "6 byte" summary of the most commonly
used messages sent to a programmable controller.

Command

READ(WORD)

WRITE(WORD)

WRITE(BIT)

READ(BLOCK)

WRITE (BLOCK)

UNIT ADDRESS

Where:
LA -
HA -
LD -
HD -
CK -
LDx~-
HDx-
KY -
FL -
FH -
CDh -

BD -

DM -

Release 1.0

Tx to PC: 00 LA HA DM DM CK
Rx from PC: OO0 LA HA LD HD CK

Tx to PC: 01 LA HA LD HD CK
Rx from PC: 0l LA HA LD HD CK

T™x to PC: 03 LA HA BD DM CK
Rx from PC: 03 LA HA BD DM CK

Tx to PC: 05 LA HA NU DM CK
Rx from PC: 05 LA HA NU DM CK LDl HDl LD2 HD2 ... CD

Tx to PC: 07 LA HA NU DM CK LDl HD1 LD2 HD2 ... CD
Rx from PC: 07 LA HA NU DM CK

Tx to PC: OA AD 00 00 00 CK
Rx from PC: OA AD KY FL FH CK

Low byte of address in PC
High byte of address in PC
Low byte of data transmitted to PC (write)
received from PC (read)
High byte of data transmitted to PC (write)
received from PC (read)
Checksum of previous 5 bytes
Number of words minus one to be read from PC
Low byte of returned data byte number 'x'
transmitted data byte number 'x'
High byte of returned data byte number 'x!'
transmitted data byte number 'x'
Keyswitch position of addressed PC. See page 7 of Comm.
Manual
Low byte of addressed PC fault register
High byte of addressed PC fault register
Checksum of data bytes only (does not include command
bytes)
Bit Data. Configuration byte for "bit write" command
8 7 6 5 4 3 2 1
0 0 0 X Y Y Y Y
! Fee ettt et
! !
! +-——- Binary number of bit
! number (0 - F)
Fmm e 0 - write zero to location
1 - write one to location
Dummy variable (value not significant)

Section 7: Westnet II Communications Commands

The Westnet II data highway permits up to 254 programmable
controllers, computers, and WDPF drops to share a common data base.
This means that information can be passed easily among each other
drop. Information is available two ways from this network. One,
the intelligent device emulates a program loader, while the second
method involves the intelligent device emulating a programmable
controller,

Emulating a program loader is easier and more straight forward and
is the method discussed here.

Hardware Overview

Each Westnet II Programmable Controller Interface (PCI) designed for
the PC 700/900/1100 series processor has the following connections:

Westnet II Data Highway
______________________ A ——— e e

i
I
I
I
I
I
I

-
i
I
I
I
I
I
I
F o= e
I
I
I
I
|
I
I

-

!
1
! PCI
!

PCI
R e T + e +
! ! ! ! ! !
! ! ! ! ! !
Program ! ! ! ! ! ! Program
Loader —-—--- + ! ! ! ! te——— Loader
! ! ! !
PC #1 - + ! ! Fem PC #3 (Sub-
(Sub-Drop 0) ! ! : Drop 1)
! !
PC #2 ———mmmmmm + F PC #4 (Sub-
(Sub-Drop 1) Drop 0)

The above diagram show the topology of a typical Westnet system.
All stations communicate via a coaxial cable. Up to 2 PC's and one
computer or program loader can be connected to each PCI.

The steps required to communicate with a programmable controller via
the Westnet II data highway are:

1. Address a drop and sub-drop that communications is to be directed
to by sending a "Set Highway Address" command from your computer
to the PCI. The PCI (not the PC) will acknowledge this message.
Note that the PCI will acknowledge this message even if the
requested drop or subdrop does not exist. Although the PCI
acknowledges this message within a few milliseconds, the PCI has
not attempted to 1link up with the requested drop yet. For this
reason, your computer should pause for 100 mS (maximum) before

Revision 1.0 7 -1

s

attempting to read data or session status from the addressed PC.

2. Read the Session Status of that drop to determine if any other
drop is communicating with that particular drop. If the drop or
subdrop does not exist, then no response will be heard from any
session command. The computer should interpret no response as no
drop or subdrop exists at that address. If the drop exists but
another program loader or computer is already in session with the
same addressed drop, your computer will receive a response giving
the drop and subdrop address of that other computer or program
loader. See the summary of Westnet II commands to show how you
can tell from the response message which other drop is in session
with the drop you have addressed.

3. (Optional) Open a session with that drop to lock out other
stations that may attempt to communicate simultaneously with the
same drop. The programmer must make the decision on whether
simultaneous communications with a drop is to be permitted or
prohibited. In a data acquisition system, multiple stations
reading the same information at very nearly the same time may be
permitted or even required, while it may be undesirable to have
two stations downloading ladder to the same processor
simultaneously.

4. Communicate with the drop using conventional "6 byte" protocol.
All of the above commands (except unit address and data highway
commands) are transmitted over the program lcader port of the
data highway exactly as if you were connected to the PC directly.
Once a drop is sucessfully addressed, the PCI performs all tasks
required to open a transparent link from your computer to the
address drop. As far as your computer knows, you are connected
directly to the addressed programmable controller.

5. (Optional) If your program "Opens a session” with a drop, all
other devices are prohibited from communicating with that drop.
If the programmer wishes other devices to have access with this
drop again, the session must be "closed".

6. Repeat with step 1.

7. A PCI continuously polls the connected programmable controller,
reading and writing to various memory locations within the PC.

8. If pin 5 or pin 6 of the PCI drops low, the PCI stops
communicating with the PC.

9. If pin 5 and pin 6 remain high, but the PC does not respond to
any messages from the PCI, the PCI continues trying to
communicate for approximately 45 seconds. If after 45 seconds no
response is heard from the PC, the PCI will stop trying. The PCI
reset button (located on the MPI card) must be pressed to
restart communications.

Summary of Westnet II Commands

Revision 1.0 7 - 2

Command

SET HWY ADDRESS Tx to PC: 09 00 HW DR SB CK
Rx from PC: 09 00 HW DR SB CK

READ REMOTE ADD Tx to PC: 09 01 00 00 00 CK
Rx from PC: 09 01 HW DR SB CK

READ HWY STATUS Tx to PC: 09 02 00 00 00 CK
Rx from PC: 09 02 EC 00 00 CK

OPEN SESSION Tx to PC: 09 03 00 00 00 CK
Rx from PC: 09 03 00 00 00 CK

CLOSE SESSION Tx to PC: 09 04 00 00 00 CK
Rx from PC: 09 04 00 00 00 CK

READ SESSION Tx to PC: 09 05 00 00 00 CK
Rx from PC: 09 05 SS DR SB CK

READ LOCAL ADD Tx to PC: 09 06 00 00 00 CK
Rx from PC: 09 06 HW DR SB CK

Where:

HW - Highway number (0 is all that is presently supported)
DR - Drop number (1 - 254)

SB - Sub-Drop number (0 or 1)

CK - Checksum

SS - Session Status
80 - no drop in session with this PC
XX - highway number if drop in session with another

EC - Error Code
0 - no error found
1 - message buffer full
2 - invalid addressed drop (255 is invalid, for
example)
4 - message size invalid (128 byte or 64 HR's is
maximum allowed)
12 - PC in session with another drop. You are locked
out.

Description of Highway Command codes

Set Address:
This code is used to set up a transparent channel from
one drop of the highway to another. Once the "Set
Address" command is acknowledged by the highway,
conventional "6 byte" commands may be sent to the
programmable controller. Communications proceed as if
the computer were connected directly to the
programmable controller.

Revision 1.0 7 - 3

Read Remote Address:
This function returns the address of the drop addressed
on the highway.

Read Highway Status:
If a highway command is acknowledged with a 2 byte
error response, execute this command to determine the
cause of the highway error.

Open Session:
If the programmer wishes to lock out other stations
during the time that his computer is communicating with
the addressed drop, a "Session" may be opened.

Close Session:
A session must be closed with a drop to allow other
locations the ability to communicate with that drop.

Read Session Status:

This command returns the address of the location in
session with the addressed drop.

Read Local Address:

Returns the address of the drop your computer is
plugged into.

Revision 1.0 7

Section 8: PC 700/900/1100 Memory Map
The PC700/900/1100 Memory Map is composed of five main areas:

- Holding Registers

- Ladder Memory (Program Memory)
- I/0 Image

- Parameter Table

- Monitor Table

Holding Registers are usually used by the Programmable Controller
for storage of numerical data. Since all numerical data is stored
in binary form, certain applications may use Holding Registers to
store groups of bits. A discussion later in this document shows
some techniques on dealing with binary data in a packed digital
form.

Program Memory starts at the Start of Program location and continues
to just above the Highest Holding Register Used (HRRU) location (see
memory map listed later). Each 16 bit memory location is referred
to as a "word". Since one word of memory is used for each element
in a PC's ladder diagram, each word address contains the information
for completely describing a ladder element. Refer to Westinghouse
for a description of the PC700/900/1100 data base used to store
ladder. Ladder contact logic is stored in memory using the
following format:

g g U S SO B S St SN N U}

t16 !'15 14 t13 12 111 10t 9 vt 81 7 Vv t5 Y41 31 21 1!

G S U U G S WA S SOt SNVt SO SR §
! ! ! ! ! + 11 bit address +

' 1

! PO Return attribute if 1

Fom e Up attribute if 1

tom s bmm s b

S Open attribute if 1

emm s semn s s s s

!
!
!
!
!
!
!
! o e N.C. contact if 1
1

e —————— Contact is a S.F. if 1
For a discussion of attributes, refer to Westinghouse.

Note that the PC 700/900/1100 family of programmable controllers do
not use user memory for the I/0 image table. Separate memory is
available and can be accessed through the RS-232 port. This memory
is not keyswitch protected, thus permitting forcing with the key-
switch in the RUN/PROGRAM PROTECT position. The I/0 image table's
position within the memory map varies from the PC 700 to the PC 900
and 1100. The exact location for each element (IR's, IG's, OR's,
and OG's) can be determined through the processor Parameter Table.
Refer to the Westinghouse "Communications Manual" for a more
complete description of this table as well as other memory
locations.

Revision 1.0 8 -1

Description of I/0 Image Memory

The programmable controller solves ladder rung, communicates with
its various serial ports, and also communicates with it I/O racks.
Part of the processors scan time is devoted to reading the data from
input modules and placing this data into memory called the "input
image table". The processor also reads a portion of memory called
the "output image table"™ and uses this information to command the
various output modules on or off.

The Westinghouse PC700/900/1100 processors conveniently group these
image tables into groups. These groups are called Input Groups and
Output Groups. A group is 16 bits of I/O data. Group numbering
starts at one.

When the processor is communicating with analog or register I/O the
concept is similar. The processor reads a block of data (a
register) from one of these analog or register input cards and
places this data into memory. This memory location is called an
Input Register. The processor also reads a location in memory
called an Output Register and writes this information to an analog
or register output module.

oG - Output Group. 0Gl represents outputs 1 through 16. 0G2
represents outputs 17 through 32, etc. . Simply a group of 16
outputs all available in one register. This register, and
those listed below, are located in the processors I/0 image
memory. This table's location can be found through the
processor parameter table (described later).

IG - Input Group. IGl represents the inputs 1 through 16, etc.

OR - Output Register. A register as defined by the PC is a 16 bit
location in memory typically used for storing numerical data,
although it can be used for discrete data. Output registers
are used by the PC to transmit numerical data to analog or
register (LED/LCD display) modules

IR - Input Register. Similar to an Output Register except the data
received from analog or register input modules is placed in
this location for use by other parts of the programn.

All processors have a similar memory map. The major differences in
locations between the three processors is the location of the I/0
image table. Location of Holding registers, for example, always
starts at absolute address OOOOH and extends to the "Highest Holding
Register Used" (HRRU) pointer (value of this pointer can be found by
reading absolute memory address 8201H). The start of ladder always
starts at the "Top of Memory" (dependent on the amount of memory
available in the particular processor) and extends DOWNWARD to the
bottom of memory. Note that HR's start at address 0000H and work
up, while ladder starts at the top of memory and works down. The
value of (EOP)-(HRRU) gives the amount of free memory available.

Revision 1.0 8 - 2

In general, the PC700/900/1100 programmable controllers have the
following memory organization:

—————— 16 bits wide -—---

S SRS EE S + 0000H

! Holding Registers !

! !

Fm e + Highest Holding Register Used (HRRU)

Unused Memory

. .

End of Program (EOP)

+ se oo oo
|
|
§
|
1
!
i
I
|
I
]
1
]
I
1
|
|
|
i
1
I
1
|
e b es e e

e + Start of Program (varies with memory)
: * Memory Void * :

e + 8000H

! I/0 Image Table !

] !

Fom + B80BFH (varies with processor type)
: * Memory Void * :

e + 8200H

! Parameter Table !

1]

Fo e + 821FH

: * Memory Void * :

o ——————— + 84BSH

! Monitor Table !

] 1

o e e + B84FFH

: * Memory Void * :

e + FFFFH

To better describe this memory mapping, let's examine the PC700 in
greater detail.

The PC700 processor has the following memory organization. Each
memory location is 16 bits wide. The memory maps of the PC900 and
PC1100 are similar except for the location of the I/0 image (IG's,
0G's, IR's, OR's). A quick reading of the PC's parameter table
locations 8213H, 8212H, 820EH, and 820DH, respectively, would show
their exact location (see description of PC parameter table listed
below).

Absolute Memory Addresses (PC700)
Address Description

Hex Decimal 2-byte Decimal

0000 0000 00 00 HROO0O1
0001 0001 00 01 HROOO02
0002 0002 00 02 HROOO3

Revision 1.0 8 - 3

XXXX XXXX XX XX Highest Holding Register used (HRRU)

- - - - Unused Memory (Available for Ladder
or HR use)

YYYY YYYY YY Yy End of program (EOP) *
7JFFF 32767 127 255 Largest memory permitted.
8000 32768 128 00 IG0001
8001 32769 128 01 IG0002 Discrete Inputs
8002 32770 128 02 IG0003
800F 32783 128 15 IG0016
8040 32832 128 64 0G0001
8041 32833 128 65 0G0002 Discrete Outputs
8042 32834 128 66 0G0003
805F 32863 128 95 0G0032
8080 32896 128 128 IR0001
8081 32897 128 129 IR0002 Register Inputs
8082 32898 128 130 IR0003
809F 32927 128 159 IR0032
80A0 32928 128 160 OR0001
80A1 32929 128 161 OR0O002 Register Outputs
80A2 32930 128 162 OR0003
80BF 32959 128 191 OR0032
8200 33280 130 00 e e
Parameter Table
821F 33311 130 31 Fhhkkhkkhkhhdhthhors
FFFF 65535 255 255 End of Memory

* Ladder program is written from the Top of Memory, down to the End
of Program address. As the ladder program grows, the End of
Program address approaches the Highest Holding Register Used
pointer.

In other words, the processor continually optimizes the available
memory between Registers and Ladder Logic. As the ladder
requirements grow, the available Holding Registers decrease to
allow for the expansion. On the other hand, if only a few
registers are needed for the program, the rest can be converted
into "Ladder memory".

Revision 1.0 8 - 4

Binary to "2 byte" Decimal

If only one bit of a byte is on, it is relatively easy to recognize
which bit is set. Each bit contributes a value to the decimal
number equal to 2 raised to the power of the bit number minus one,
if the least significant bit (LSB) is considered bit 1. For example,
if the 2nd bit of the byte is on, the decimal number representing
this binary bit is 2. If 16 bit data is to be dealt with, the
procedure is not changed except that the conversion must be done
with both the upper and lower bytes. The following table describes
this concept in more detail.

Summary of Binary / "2 byte" decimal Conversions

Following a word read, the programmable controller will return 6
bytes of data. The fourth and fifth bytes contain the lower and
upper bytes found a the requested memory location inside the PC.

In the following table, the fourth byte is represented by "L" and
the fifth byte as "H" (for low byte and high byte).

——————————————————— Bit Number ——————eem—mmm e
L Upper Byte
15 14 13 12 11 1

OANHOOODOOOOO o
W
N

D W =
N\l o)}
COOO0OO0OO0OO0OO0OO0OOOOOOHOOWD

-

N

o]
HOOOOOOOOOOOOoOOoOOoOOoOO,
OHOOOOOOODOOLOODOOO WV
COHOOOOOOOODOOOOO
SCOOHOOOODOOOOOOOO
QOO OHOOODDODOODOOOOO
OO0 O0OOHOOOODOOOOOO
OO0 OHODODOOOOLOOOO
OO0OO0OO0OOCOOHOODODOOODOOOW
OO0 OCOOO0OHODOODOOOO®
QOO0 OOO0OOHOOOOOON
oNoNoNeoNoNoNoNoNolol loNoNoNoNoNo Ny
OO0OO0OOOCOOOCOLOOHOOOOUD
eololoNeoloNolololololoNol JNoNoNoN Ny
OCOOOO0OOO0OO0DOOOOOCOHON
oeolojoNojololololololeoNoRNoReN i

128

If only one bit was energized in the register, the fourth and fifth
data bytes returned would look like those shown in the table.

The procedure of reading from, or writing to, a specific bit in a PC
representing a control relay (CR), is similar to that used with
inputs. In this case, however, output groups rather than input
groups are used. Also, since it is desirable to write to just one
output at a time, the "Bit Write" opcode should be used.

Revision 1.0 8 - 6

Bit Number

0GO1 16
0G02 32

0G06 96

These and other addresses are more fully discussed in the
Westinghouse "Communications Manual", catalog #NLAM-B58.

Revision 1.0

95

94

93

92

27

o1

26

90

Section 9: PC 700/900/1100 Parameter Table

The PC700/900/1100 all set aside a 32 word (16 bit wide) memory
block that contains various pieces of information used by the
processor. This table is always located at absolute memory address
8200H and extends to 821FH. A user's program may access this table
or even write data to it. The following description gives an idea
of the type of information stored at these locations. If the
processor keyswitch is in the "Run/Program Protect" position, you
cannot write to the parameter table.

8200H End of Program Location
8201H Highest Holding Register Used (HRRU)
8202H Low Ladder Checksum
8203H High Ladder Checksum
8204H Register Checksum
8205H H:Mode Register L:Flag Register
8206H Error Register
8207H Bits 16 - 3 Reserved
Bit 2: Ladder Checksum override
Bit 1: Keyswitch override
8208H-
820BH Reserved
820CH Monitor Table Address
820DH Output Register Address
820EH Input Register Address
820FH H:Number of Input Registers L:Number of Output Registers
8210H Discrete Output Force Table Address
8211H Discrete Input Force Table Address
8212H Output Status Table Address
8213H Discrete Input Status Table Address
8214H H:Number of Inputs/8 L:Number of Outputs/8
8215H H:Memory Size/256 L:Maximum Discrete Coils/8
8216H H:Product Line Code/Product Line Modifier L:Software
Version Number
8217-
821FH Special Functions Allowed (see page 5 of "Communications
Manual" for description of this table.)

Release 1.0 9 - 1

Section 10: IBM PC Communications via BASICA

The IBM Personal Computer DOS diskette includes an advanced BASIC
interpreter called BASICA. This language includes some powerful
serial communications commands that make the programmers job easier.

Refer to Appendix E for an example of the cable necessary to connect
between your computer and the programmable controller, modem or
Westnet II PCI.

Configuring the Serial Port

You need to determine the following parameters before you can
configure a serial port for asynchronous communications. These
parameters are:

. Baud Rate

. Number of bits per character
. Type of parity

. Number of stop bits

DN wWwN =

Numa-Logic programmable controller default to 9600 baud, 8 data
bits, odd parity, and 2 stop bits. Let's use these parameters in
our BASICA program.

BASICA uses the statement 'OPEN "coml:....' to configure the serial
port. Using the Numa-Logic default parameters:

OPEN "coml:9600,n,8,2" as #2

This statement opens up the COM1 serial port, assigns it to file #2
and raises RTS and DTR. One problem with this statement is that
BASICA is unable to OPEN a communications file using 8 data bits and
any parity other than none. We can code around this by inserting
the following statements after the OPEN statement:

T%=INP(1019) ' read the COMl line control register
T%=T% OR 8 ' set the 4th bit (enable parity)
OUT 1019,T% ' send new line control register to 8250 UART

If you are using COM2 instead of COM1l, the address of the line
control register is 763 rather than 1019.

The IBM BASICA is now configured for 8 data bits AND odd parity.

Transmitting Characters

Let's assume that we want to transmit a "read HROOO1" message to the
PC. Referring back to "Section 6 : PC700/900/1100 Communications
Commands" we note that the correct six byte message is:

00 00 00 00 00 00

Simple enough. Now how do we transmit this out the serial port?

Release 1.0 10 - 1

With the "PRINT #n" command, that's how. Using the above example,
we code the following statement:

PRINT#2, CHR$(0);CHR$(0);CHR$(0);CHR(O) ;CHR$(0);CHR$(0);

Note the use of the semicolon. The semicolon suppresses the
carriage return/line feed (0D, OA Hex) normally sent at the end of a
print statement.
For more flexibility we may wish to replace the "0O's"
with variable names so that we may change the message just by
changing the variable value. For example, let's define each of the
six bytes with a descriptive name:

binary zero.

Byte Variable

U W -

OP%
LA%
HA%
LD%
HD%
CK%

The "CHR$" is used to convert the ASCII "0" to a

Description

The opcode describes what the message does
The next byte is the low byte of the address
The next is the high byte of the address
This is the low byte of the data sent

And the high byte of data sent to the PC

The checksum of the previous five bytes

PRINT#2, CHR$(0P%) ;CHRS$ (LA%) ; CHRS$ (HA%) ; CHR$ (LD%) ; CHRS$ (HD%) ;
CHR$ (CK%)

The calculation of the checksum is simple enough:

CK%=0P%+LA%+HA%+LD%+HD% 'sum up previous 5 bytes

CK%=CK% AND 255

To conclude,

‘discard data past the 8th bit

let's put all of these statements together.

10 ' Transmit a "Read HRO0Ol message out the COMl serial port

20 !

30 OPEN "coml:9600,n,8,2" as #2

40 T%=INP(1019)

50 T%=T% OR 8

70

90

100 GOSUB 200

110

60 OUT 1019,T%
1

80 OP%=0:LA%=0:HA%=0
'

calculate checksum

120 PRINT#2, CHR$(OP%);CHR%(LA%) ; CHRS(HA%) ; CHR$ (LD%) ; CHR%(HD%) ;
CHR$ (CK%) ;

130 END
200 !

210 'calculate the checksum
220 CK%=0P%+LA%+HA%+LD%+HD
230 CK%=CK% AND 255

240 RETURN

Release 1.0

10 - 2

Read Data from the Serial Port

IBM BASICA makes it easy to read data from a serial port since the
language will buffer up to 256 characters before being overrun. If
more buffer capacity is needed, BASICA can be invoked with the /C:
option. Using this option, up to 32K of buffer space can be set
aside. Refer to your BASICA manual for more details.

To receive those characters loaded into the communications buffer,
the BASICA INPUT$(x,y) is used, where x is the number of characters
to be removed from the buffer during each read and y is the file
buffer to read characters from. For example, read one character
from file #2: ’

Z$=INPUT$(1,2)

When this statement is executed, one character from file #2 will be
loaded into the string variable Z$. For convenience, let's use an
array variable to receive the data from the buffer:

Z$(I)=INPUT$(1,2)

To read all the data from the buffer, we need to know when the
buffer has data to be read. The BASICA EOF(n) statement performs
that task. For example:

WHILE EOF(2)=0
Z$(I)=INPUT$(1,2):Y%(I)=ASC(Z$(I)):I=I+1
WEND

The WHILE/WEND loop will continue to read characters from the
receive buffer as long as EOF(2) equals zero (more data available).
Once EOF(2) equals negative one (signaling no more data in buffer),
the program drops out of the WHILE/WEND loop.

In summary, a simple and concise program to read data returned from
a programmable controller could be:

300 'Routine to read data from the file buffer #2 (COM1)
310 ¢

320 I=0

330 WHILE EOF(2)=0

340 Z$(I)=INPUT$(1,2):Y%(ASC(Z$(I)):I=I+1

350 WEND

The above programming examples assume that the computer will always
initiate messages and will know when to expect data (poll/response).
If the programmer must write a program that will expect data at any
time, the built-in interrupt features of BASICA can be used.

If it is desired to input a value from the keyboard to be loaded to
the programmable controller, and additional routine to convert an
integer value into two, 8 bit bytes must be shown. Note carefully
the following program, especially line 310, which shows the
statement necessary to perform the conversion. This same statement

Release 1.0 10 - 3

can be used to convert any 16 bit integer into two, 8 bit bytes.
This is handy for converting both data and address words sent to the
PC that have been entered from the keyboard.

10 ' Configure serial port for 9600, 8 data, odd parity, 2 stop
20 !

30 OPEN "coml1:9600,n,8,2" as #2

40 T%=INP(1019)

50 T9%=T% OR 8

60 OUT 1019,T%

70

100 ' Program to prompt for address and data in PC
110

120 INPUT"Read or write (R/W) ";A$

130 IF A$="r" OR A$="R" THEN OP%=0:GOTO 160
140 IF A$="w" OR A$="W" THEN OP%=1:GOTO 160
150 GOTO 120

160 INPUT"Enter address ";X%

170 GOSUB 300 :' CONVERT TO TWO 8 BIT BYTES
180 LA%=L%:HA%=H%

190 IF OP%=1 THEN 230

200 INPUT"Enter data ";X%

210 GOSUB 300 :' CONVERT TO TWO 8 BIT BYTES
220 LD%=1%:HD%=H%

230 GOSUB 400 :' TRANSMIT DATA OUT THE SERIAL PORT
240 GOSUB 500 :' GET RETURNED DATA FROM RCV BUFFER
250 PRINT"Returned opcode = ";0P%
260 PRINT"Returned address = ";AD%
270 PRINT"Returned data = ";DA%

280 GOTO 120

300 ' Convert 16 bit integer to two 8 bit bytes
310 H%=X% 256 :1L%=X%~ (H%*256)
320 RETURN

400 !

410 GOSUB 450 ' calculate checksum

420 1

430 PRINT#2, CHR$(OP%);CHR%(LA%) ; CHRS$ (HA%) ; CHR$ (LD%) ; CHR%(HD%) ;
CHR$ (CK%) 3

440 RETURN

450

460 'calculate the checksum

470 CK%=0P%+LA%+HA%+1D%+HD

480 CK%=CK% AND 255

490 RETURN

500 'Routine to read data from the file buffer #2 (COM1)
510 !

520 I=0

530 WHILE EOF(2)=0

540 Z$(I)=INPUT$(1,2):Y%(ASC(Z$(I)):I=I+1

550 WEND

560 RETURN

Release 1.0 10 - 4

Interrupt Based Communications

IBM BASICA has additional functions that permit the communications
task to exist somewhat in the background of the main program. These
functions allow, among other things:

~ The program to execute lines of code while characters are being
received or transmitted via the serial port

- Maintain communications over two serial ports "simultaneously"
without the necessity of waiting until one remote station is
finished downloading data to your computer.

BASICA provides two statements that permit activity on one of the
serial ports to "interrupt" the BASICA program. The handler will
buffer the characters, then transfer control (GOSUB) to another
portion of the program for receive data processing. These BASICA
statements are:

— ON COM(n) Enable interrupt

— ON COM(n) GOSUB xxxx : Branch to line xxxxX on receive data
These statements are not used extensively for Numa-Logic interface
routines since the programmable controller is nominally an
interrogate-only device. The PC will not send data to you unless it
is asked for.

Refer to the IBM (or Micro-Soft) BASICA (or GWBASIC) manual for more
information on interrupt driven communications.

Refer to Appendices A,B and C for examples of programs written
using IBM (MicroSoft) BASICA.

Release 1.0 10 - 5

Section 11: Apple][+ Communications via Super Serial Card

At the time this was written, APPLESOFT BASIC did not support any
high level commands that permitted easy reading or writing through
the serial port provided on the "Apple Super Serial Card" (catalog #
A21,0044). The user could use INPUT and PRINT statements for
communications, but these impose severe limitations on the
programmer who needs to communicate with a binary protocol.

The only solution was to program the communications handlers in
assembly language and use the APPLESOFT CALL statement to transfer
control to these handlers when necessary. Due to the complexity of
the assembly code, and the fact that an understanding of the code is
not necessary to use the functions, Appendix H was set aside for an
in~depth listing of all the assembly handlers used.

The program makes the following assumptions about the users
computer:

1. 48K memory oOr more
2. Super Serial Card located in slot 1

Transmitting a 6 byte sequence to the Programmable Controller

The APPLESOFT programmer has an easy way to send a six byte command
to the programmable controller connected to the Apple][+ Super
Serial Port using an APPLESOFT CALL statement. For our example,
assume that we want to send the command "read HROOO1" to the
programmable controller. We remember (from section 6) that the six
byte message is:

Read HROOOl: OO0 00 OO 00 00 0O

The programmer must load, via the POKE statement each of the six
bytes to be transmitted. The following table gives the names and
POKE addresses that are used:

Byte POKE Address Description

1 28928 (7100h) opcode

2 28929 (7101h) 1low byte of PC address

3 28930 (7102h) Thigh byte of PC address

4 28931 (7103h) 1low byte of data to be sent to PC
5 28932 (7104h) high byte of data to be sent to PC
6 28933 (7105h) checksum

These variables may be loaded with the APPLESOFT POKE statement.

100 POKE 28928,0P
110 POKE 28929,LA
120 POKE 28930,HA
130 POKE 28931,LD
140 POKE 28932,HD

REM 1load the opcode

REM 1load the low byte of the address
REM 1load the high byte of the address
REM 1load the low byte of data sent

REM 1load the high byte of data sent out

Release 1.0 11 - 1

Note that it is not necessary to load the value of the checksum.
Another CALL statement has been provided to do that. To calculate
the checksum of the five bytes loaded at 28928 through 28932
inclusive, simply CALL 24880, This routine calculates the proper
checksum and loads the value at 28933 (7105h).

Once the data is loaded into the proper memory locations with the
POKE statements, 1t is a simple matter to execute a CALL statement
to transmit this data out the serial port. This statement is:

CALL 26112 : REM transmit 6 byte sequence out the serial port

The assembly language routine will send the data out the serial port
and wait for a six byte response from the PC. If six bytes are not
returned, the program gets any data that was returned and sets an
error flag. The returned data is loaded into these memory
locations:

Byte PEEK Address Description

1 28934 (7106h) returned opcode

2 28935 (7107h) returned low byte of address
3 28936 (7108h) returned high byte of address
4 28937 (7109h) returned low byte of PC data
5 28938 (710Ah) returned high byte of PC data
6 28939 (710Bh) returned checksum

Execute a CALL 24912 to verify that the returned checksum matches
the data received. If it doesn't, an error flag will be set that
can be tested by a APPLESOFT PEEK statement.

28940 (710Ch) error flag. should be zero

Using these statements in a program to communicate with a Numa-Logic
PC700/900/1100 PC is a simple matter. For example:

50 REM PROGRAM TO READ HROOOl1 AND PRINT RESULT

60 REM

70 REM

80 REM SYNC WITH PC FIRST

S0 CALL 26368

100 IF PEEK(28942)=0 THEN 120

110 PRINT"UNABLE TO SYNC":GOTO 90

120 OP=0:LA=0:HA=0 : REM PRESET OPCODE AND ADDRESS
130 POKE 28928,0P : REM LOAD OPCODE

140 POKE 28929,LA : REM LOAD LOW BYTE OF PC ADDRESS
150 POKE 28930,HA : REM LOAD HIGH BYTE OF PC ADDRESS

160 CALL 24880 : REM CALCULATE CHECKSUM

170 CALL 26112 : REM SEND MESSAGE AND WAIT FOR RESPONSE
180 CALL 24912 : REM TEST RETURNED DATA INTEGRITY

190 IF PEEK(28940)=0 THEN GOTO 210

200 PRINT"RETURNED DATA INVALID"

210 PRINT"RETURNED VALUE OF HROOO1l = ";(256*PEEK(28932))+

PEEK(28931)

Release 1.0 11 - 2

Section 12: Radio Shack TRS-80 Model II Communications

The Model II (as well as the Model 12 and 16 operating in the Model
II mode), operating under the TRSDOS 2.0b operating system and using
ModelZBASIC, does not provide a convenient method of communicating
with the serial ports. Again assembly language provided the needed
link with BASIC via the USR statement (Model II BASIC has no CALL
statement).

Configuring the system

The programmer must first configure the serial port via the SETCOM
command from the TRSDOS prompt:

SETCOM B=(9600,8,0,2)

This statement configures the 'B' channel serial port for 9600 baud,
8 data bits, odd parity and two stop bits. Channel 'B' was
configured since the driver "COMLINK" uses channel 'B' supervisory
calls. Refer to your TRSDOS 2.0b/4.2 manual for more information on
the use of supervisory calls.

Once the serial port is configured, the assembly language driver
COMLINK is loaded:

COMLINK

Now BASIC can be loaded. Note that the high memory boundary was set
to 57340. This is done to prevent BASIC program statements from
over-writing the assembly language driver COMLINK. Additionally,
the number of files 1is set to one (to maximize the memory available
for program) and the program TEST is loaded and executed.

BASIC TEST -F:1 -M:57340

Configuring BASIC

COMLINK loads two assembly language drivers into memory that can be
accessed from BASIC. One driver is located at memory address EO0O13h.
This driver is used to transfer a byte from BASIC and then transmit
this byte out the serial port. The other driver is located at
memory address EOQOOh. This other driver is used to remove a byte
from the receive buffer and return it to BASIC. To use these
drivers, the following BASIC statements are necessary:

100 DEFUSR2=&HEO13 : ' point to memory location of Tx USR stmt.
110 DEFUSRI=&HEOOO : ' point to memory location of Rx USR stmt.

Release 1.0 12 - 1

Transmit a byte

Simply load the variable to be transmitted into the variable T% and
transfer control to the following statement. The variable X% is a
dummy variable.

110 X%=USR2(T%) : ' transmit the variable T% out the port

Receive a byte

One nice thing the the assembly language receive driver does, is to
buffer up to 16 characters received at the serial port. Since most
responses from the PC will be only six bytes in length, this does
not pose a problem. To transfer a byte from the receive buffer to a
variable Y%(I) in BASIC, the following statement is used. The
variable R% is a dummy variable.

200 Y%(I)=USRL(R%)

These two USR statements can be used to communicate with the
programmable controller.

SET UP POINTER TO MEMORY FOR RCV ROUTINE

85 DEFUSR1=&HEOQO
3 SET UP POINTER TO MEMORY FOR TX ROUTINE

90 DEFUSR2=&HEO1
95 GOTO 130

100 GOSUB 105:T%=0P%:GOSUB 120:T%=LA%:G0OSUB 120:T%=HA%:GOSUB 120:
T%=1LD%:GOSUB 120:T%=HD%:GOSUB 120:T%=CK%:G0OSUB 120:G0OSUB 110:
RETURN

105 CR%=0P%+LA%+HA%+ILA%+HA%:RETURN

110 FOR I=1 TO S50:NEXT:FOR I=1 TO 6:GOSUB 125:NEXT:IF Y%(1)=0P%
THEN RETURN ELSE PRINT"COMMUNICATIONS FAILURE"

115

120 X%=USR2(T%) :RETURN

125 Y%(I)=USR1(R%):RETURN

130 FOR I=0 TO 15 :' RCV BUFFER CLEAR ROUTINE

135 GOSUB 125

140 NEXT I

150 PRINT"Attempting Sync with PC"

155 CO=0:T%=0:R%=0 :' PRESET SYNC COUNTER AND TX DATA
160 CO=CO+1 :+' INCREMENT SYNC TRIES COUNTER
165 IF CO=20 THEN 170 ELSE 185

170 PRINT"Unable to Sync"

175 PRINT"Error code - ";HEX$(Y%(1))

180 INPUT"Hit ENTER to reattempt sync procedure ";A$:GOTO 130
185 GOSUB 120 :'"CLEAR RCV BUFFER AFTER SYNC ATTEMPT

190 FOR K=1 TO 50:NEXT :'PAUSE

195 1I=1

200 GOSUB 125

205 IF Y%(I)»255 THEN 210 ELSE 215:' TEST FOR RCV DATA

210 IF Y%(I)=256 THEN 160 :'IF =256, NO DATA IN RCV BUFFER

215 IF Y%(I)y10 THEN 160 :' IF GREATER, THEN PC DETECTED ERROR

Release 1.0 12 - 2

P——

220

225
230
235
240
245
250
255
260

1560
1565

Release 1.0

FOR I=2 TO 6:GOSUB 125:NEXT :'CLEAR RCV BUFFER

'READ HROOO1 FROM PC

OP%=0:LA%=0:HA%=0 :'PRESET OPCODE AND PC ADDRESS
GOSUB 100 :' TRANSMIT MESSAGE

FOR I=1 TO 50:NEXT :' PAUSE

GOSUB 1565 :'EXTRACT RETURNED DATA

PRINT "HROOOl contains - ";VL

END

' CALCULATE RETURNED DATA
VL=(256*Y%(5))+Y%(4) :RETURN

12 - 3

Appendix A : IBM PC Communications Sample Program — PCTEST.BAS

This program is designed to communicate with a programmable
controller using the COM1 serial port.

The program prompts the user for a type of command to be sent to a
PC directly or via the HWestnet II data highway. The response from
the PC or PCI is parsed and descriptive error messages (1f any) are
given.

10 DIM Zs(200),Y%(200}
20 ° ON ERROR GOTO 2850
30 CLS:KEY OFF
40 INPUT"Do you need help (Y/N) ";AS
50 IF As="y" OR As="Y" THEN GOSUB 2960
60 OPEN "coml:9600,n,8,2" AS #2
70 CLS:PRINT"Baud Rate Selection Menu"®
80 PRINT
90 PRINT:PRINT"1. 150"
100 PRINT"2. 300":
PRINT"3. 600" :
PRINT"4., 1200":
110 PRINT"S. 2400":
PRINT"6. 4800":
PRINT"7. 9600"
120 T%=INP(1019)
130 PRINT:INPUT"Enter your choice ";BS
140 IF Bs="1" THEN LB%=&HO:HB%=&H3
150 IF Bs="2" THEN LB%=&H80:HB%=&H1
160 IF Bs="3" THEN LB%=&HCO:HB%=&HO
170 IF Bs="4" THEN LB%=&HG60:HB%=0
180 IF Bg="5" THEN LB%=&H30:HB%=0
190 IF B&="6" THEN LB%=8&H18:HB%=0
200 IF Bg="7" THEN LB%=&HC:HB%=0
210 OUT 1019,8H80:°’ set UART line control register up for Baud rate

change

220 CQUT 1016,LB% :’° baud rate divisor LSB

230 OUT 1017,HB% :’ baud rate divisor MSB

240 OUT 1019,15 :’ reset line control register

250 COM(2) ON ;7 activate communications interrupt handler
260 CLS

270 PRINT" Westnet II/Direct Connect Logic Analyzer

Program"; TAB(70)"V1.3a"

290 LOCATE 3,1:PRINT"Messages: "

300 IF STRY=0 THEN LOCATE 5,1:PRINT"Sy¥nc — Not Attempted”:GOTO 320
310 LOCATE 5,1:IF SFAIL=1 THEN PRINT"Sync - Failed " ELSE PRINT
"Sync — OK "

320 LOCATE 11,1

325 PRINT"Data Highway Commands"

330 PRINT"1. Set Highway Address”

340 PRINT"2., Open Session’

350 PRINT"3. Close Session”

360 PRINT"4. Read Session Status”

370 PRINT"S Read Local Address”

Release 1.0 A -1

R

380
390
400
410
420
430
440
450
460
470
480
4390
500
510
520
230

540
550
560
570
580
590
600
610
620
630
540

650
660
670
680
690
700
710
720
730

740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

Release

PRINT"G. Read Remote Address”

LOCATE 11,30:PRINT"Direct Connect Commands"
LOCATE 12,30:PRINT"7. Word Read”

LOCATE 13,30:PRINT"8. HWord Write"

LOCATE 14,30:PRINT"9. Block Read"”

LOCATE 15,30:PRINT"10, Block KWrite"”

LOCATE 11 ,55:PRINT"Status Utility Functions”
LOCATE 12,55:PRINT"11. Read Highway Status”
LOCATE 13,55:PRINT"12, Message editor”
LOCATE 14,55:PRINT"13. Quit"

LOCATE 15,55:PRINT"14. Select Baud Rate"
LOCATE 16,55:PRINT"15. Synchronize with PC*”
LOCATE 22,1:INPUT "Enter vour choice ";CH%
IF CH%=99 THEN GCTO 2660

IF CH%=13 THEN GOTO 3060

CHRS (HD%)

ON CHg% GOTO 1080, 1220, 1330, 1440, 1560, 1670, 1780, 1930,
2080, 2230, 2530, 540, 70, 70, 3160
CLS
INPUT "Reset Westnet ";Hsg
IF Ws="y" OR W&="Y" THEN GOSUB 930
INPUT"Format €& bytes or 3 words (6/3) ";F3g
IF Fg="c" THEN 930
GOSUB 8Z20:INPUT"Enter Opcode ";0P%
INPUT"Enter Address ";AD%
INPUT"Enter Data "; DA%
GOSUB 780
CK%=(0OP%+LA%+HA%+LD%+HD%)AND 255
PRINT $#2, CHRg(OP%); CHRS(LA%); CHRS(HA%); CHRS(LD%};
CHRS (CK%) ;
‘pause, then receive any returned data
FOR I=0 TO 200:NEXT
'start of data receive routine
I=0
WHILE EOF(2)=0
ZE(I)=INPUTS(1.,2):Y%(I)=ASC(Z8(1)):I=I+1
WEND
‘print results of unit address request
FOR J=0 TO I-1:
PRINT "y%(";J;") = "Y%(J);SPC(5);HEXs(Y%(J)):
NEXT
PRINT "Value = ";{(256%(Y%(4))})+Y%(3):PRINT

IF Fg="6" THEN 930
IF Wg="Y"OR HWg="y" THEN 550

GOTO 590
"calculate address and data bytes from 16 bit integer values
HA%=AD%\256:LA%=AD%— (HA%*256)

HD%=DA%\256:LD%=DA%—(HD%%256)
EETURN

‘prompt if RTS is to be dropped low
INPUT"Return to main menu " ;Mg

IF Mg="y" OR Mg="Y" THEN 260
INPUT"Drop RTS line (Y/N) ";M$

IF M8 = "y" OR Mg ="Y" THEN 880
RETURN

CLOSE:PRINT"DROPFING RTS"

s

890
900
910
920
930
940
350
960
970
980
930
1000
1010
1020
1030
1040
1050
10860
1070

1080
1080
1100
1110
1120

1130
1140
1150
1160
1170

1180
,sub
1190
1200
1210
1220
1230
1240

1250
1260
1270
1280

1290

1300
1310
1320
1330
1340

Release

FOR I= 0 TO 2000:NEXT

OPEN "coml:9600,n,8,2,cs,ds,cd” AS #2
OUT 1019,15:COM(2) ON

EETURN

INPUT"1st byte ";0P%

INPUT"2nd byte ";LA%

INPUT"3rd byte ";HA%

INPUT"4th byte ";LD%

INPUT"5th byte ";HD%

GOTO 630
OP%=9:LA%=0:HA%=0:1LD%=0:HD%=0

GOTO 630

FOR I=0 TO 2000:NEXT

'start of data receive routine

I=0 :

WHILE EOF(2)=0

ZS(I)=INPUTS(1,2):¥Y%(I)=ASC(Z8(I1)):I=I+1

WEND : RETURN

PRINT $#2, CHR8(OP%); CHRS$(LA%); CHRS(HA%); CHRS(LD%);

CHRS(HD%); CHRS(CK%);: RETURN

CK%=(0P%+LA%+HA%+LD%+HD%)AND 255:RETURN

'xxx%% Set hiway add xxxx

OP%=9:LA%=0:HA%=0

CLS:PRINT"Set Highway address":PRINT:PRINT:INPUT"Enter drop
“SLD%

INPUT"Enter subdrop ";HD%

GOSUB 1080:° calculate checksum

GOSUB 1070:"' transmit © byte sequence

GOSUB 1010:°' get returned data

FOR J=0 TO I-1:

PRINT "y%{";J;") = "Y%(J);SPC(5);HEX3(Y%(J)):

NEXT

IF I>3 THEN PRINT"Highway address set to drop ~ ";Y¥Y%(3);"
drop — ";Y%(4) ELSE PRINT"Highway command failed"

GOSUB 3140

LOCATE 25,1 :INPUT"Press Enter to continue";Ag

GOTO 260

'xxxx% OPEN SESSION x*%:xxx

CLS:PRINT"Open Session"”: PRINT: PRINT: OP%=9: LA%=3: HA%=0:

LD%=0: HD%=0

GOSUB 1080

GOSUB 1070

GOSUB 1010

FOR Jd=0 TO I-1:

PRINT "y%(";J;") = "Y%(J);SPC(3);HEXS$(Y%(Jd)):

NEXT

IF I>3 THEN PRINT"Open Session successful” ELSE PRINT"Command
Failed"

GOSUB 3140

LOCATE 25,1:INPUT"Press Enter to continue';As

GOTO 260

'x%xx% CLOSE SESSION x%xxx%
1.0 A - 3

1350

1360
1370
1380
13390

1400

1410
1420
1430
1440
1450
1480

1470
1480
1430
1500

1510
1520

1530
1540
1550
1560
1570
1580

1580
1600
1610
1620

1630
Y%
1640
1650
1660
1670
1680
1690

1700
1710
1720
1730

1740

CLS:PRINT"Close
Session” :PRINT:PRINT:0P%=9:LA%=4:HA%=0:LD%=0:HD%=0

GOSUB 1080
GOSUB 1070
GOSUB 1010
FOR J=0 TO I-1:
PRINT "y%(";J;:;") = "Y%(J);SPC(5);HEX${Y%(J)):
NEXT
IF I>3 THEN PRINT"Close Session successful" ELSE PRINT"Command
Failed"”
GOSUB 3140
LOCATE 25,1:INPUT"Press Enter to continue";ASs
GOTO 260
'xxxx* READ SESSION STATUS >*xxxx
CLS:PRINT"Read Session Status":PRINT:PRINT: OP%=9: LA%=5:
HA%=0: LD%=0: HD%=0
GOSUB 1080
GOSUB 1070
GOSUB 1010
FOR J=0 TO I-1:
PRINT "y%(";J;") = "Y%(J);SPC(S5);HEZS(Y%(JT)):
NEXT
IF I>3 AND Y%(2)=128 THEN PRINT"Drop not in session":GOTO 1540
IF I>3 THEN PRINT"Drop in session with drop - ";Y%(3);
,subdrop - "; Y%(4)
GOSUB 3140
LOCATE 25,1:INPUT"Press Enter to continue';AS
GOTO 260
‘xxxxx READ LOCAL ADDRESS %xxxx
CLS:PRINT"Read Local Address":PRINT:PRINT: OP%=9: LA%=6: HA%=0:
LD%=0: HD%=0
GOSUB 1080
GOSUB 1070
GOSUB 1010
FOR J=0 TO I-1:
PRINT “"y%(";J;") = "Y%(J);SPC(S);HEXS(Y%(J)):
NEXT
IF I>3 THEN PRINT"Local address: drop - ";¥%(3);" ,subdrop —
(4)
GOSUB 3140
LOCATE 25,1:INPUT"Press Enter to continue";As
GOTO 260
'xxxxx READ REMOTE ADDRESS *X%xx
CLS:PRINT"Read Remote Address":PRINT:PRINT: OP%=9: LA%=1:

HA%=0: LD%=0: HD%=0

GOSUB 1080
GOSUB 1070
GOSUB 1010
FOR J=0 TO I-1:
PRINT "y%(";J;") = "Y%(J);SPC(5);HEXS$(Y%(J)):
NEXT
IF I>3 THEN PRINT"Presently addressed to drop - ";¥%(3};"

Release 1.0 A — 4

,Subdrop — ";Y%(4)

1750 GOSUB 3140

1760 LOCATE 25,1:INPUT"Press Enter to continue';As

1770 GOTO 260

1780 ’'*xx%xxx WORD READ =xxxx

1790

1800 CLS:PRINT"Word Read":PRINT:PRINT:0OP%=0

1810 INPUT"Enter address to read ";AD%

1820 GOSUB 780

1830 GOSUB 1080

1840 GOSUB 1070

1850 GOSUB 1010

1860 PRINT"Transmitted to PC: "

1870 PRINT HEX$(OP%);" ";HEXS$(LA%);" ";HEXS(HA%):;" ";HEXS(LD%});"
“;HEX${HD%);" ";HEXS$(CK%):FPRINT

1880 PRINT"Received from PC:"

1890 FOR J=0 TO I-1:PRINT HEXS(¥Y%(J));" ";:NEXT

1900 PRINT:PRINT:PRINT "Value = ";(256%(Y¥%(4)))+Y%(3):PRINT
1910 LOCATE 25,1:INPUT"Press Enter to continue";AS

1920 GOTO 260

1930 ’'xx%xxxx WORD WRITE x%xxxx

1940

1950 CLS:PRINT"Word Write”:PRINT:PRINT:0P%=1

1960 INPUT"Enter address to write ";AD%

1970 INPUT"Enter data to write at that address ";:DA%
1980 GOSUB 780

1990 GOSUB 1080

2000 GOSUB 1070

2010 GOSUB 1010

2020 PRINT"Transmitted to PC:"

2030 PRINT HEXS$(OP%):" ":;HEXS(LA%);"” ";HEXS(HA%);" ";HEXS(LD%);"
";HEXS(HD%);" ";HEXS(CK%):PRINT

2040 PRINT"Received from PC:"

2050 FOR J=0 TO I-1:PRINT HEXS(Y%(J));" ";:NEXT

2060 PRINT:PRINT:PRINT "Value = ";(256%(Y%{(4)))+Y%(3):PRINT
2070 LOCATE 25,1:INPUT"Press Enter to continue";As
2080 GOTO 2E0

2090 ’'xxxxx pblock read xxxxx

2100

2110 CLS:PRINT"Block Read":PRINT:PRINT:0P%=5

2120
2130
2140
2150
2160
2170
2180
2190

2200
2210
2220
2230
2240

INPUT"Enter starting address ";AD%
INPUT"Enter number of words to read (64 max.) ";DA%
IF DA%<>0 THEN DA%=DA%—1
GOSUB 780
GOSUB 1080
GOSUB 1070
GOSUB 1010
FOR J=0 TO I-1:
PRINT "y%(";J;") = "Y%(J);SPC(5);HEXS(Y%(J)):
NEXT
PRINT "Value = ";(256*%(Y%(4)))+Y%(3):PRINT
LOCATE 25,1:INPUT"Press Enter to continue';A$

GOTO 260
'xxx%¥ pblocK Write »x%xx

]

Release 1.0 A -5

2250 CLS:PRINT"Block Write":PRINT:PRINT:0P%=7
2260 INPUT"Enter starting address ";AD%
2270 INPUT"Enter number of words to write " ;DA%

2280

2290 FOR K=0 TO DA%-1

2300 PRINT"Enter word number ";K+1;" ";:INFPUT WO%(K)
2310 NEXT K

2320

2330 IF DA%<>0 THEN DA%=DA%-1
2340 GOSUB 780
2350 GOSUB 1080:°'calculate checksum
2360 GOSUB 1070:°tx first 6 command bytes
2370 ' ’
2380 CK%=0
2390 FOR J=0 TO K-1
2400 GOSUB 2510
2410 CK%=CK%+HWO%(J)
2420 PRINT #2,CHR3(LA%);CHRS(HA%);
2430 NEXT J
2440 PRINT #2,CHRS(CK%);
2450 GOSUB 1010: 'get data
2460 FOR J=0 TO I-1:
PRINT "y%(";J;") = "Y%(J);SPC{5);HEXs(Y%(J)):
NEXT
2470 PRINT "Value = ";(256%(Y%(4)))+Y¥%(3):PRINT
2480 LOCATE 25,1
2490 INPUT"Press Enter to continue ";AS
2500 GOTO 260
2510 7
2520 HA%=WO%(JINZ256:LA%=WO%(J)—(HA%%256) :RETURN
2530 ’'x*xxx»x Read Highway Status x»xxx
2540
2050 CLS:PRINT"Read Highway Status":PRINT:PRINT:0P%=9:LA%=2
2560 GOSUB 1080
2570 GOSUB 1070
2580 GOSURB 1010
2590 FOR J=0 TO I-1:

PRINT "y%{";J;") = "Y%(J);SPC(5);HEXS(Y%(J)):
NBEXT
2600 IF I>3 AND Y%{2)>0 THEN PRINT"Error code — ";Y¥%(2);"
detected"”

2610 IF I<3 THEN PRINT"Command Failed"

2620 IF I>3 AND Y%(2)=0 THEN PRINT"No highway errors found"
2630 GOSUB 3140

2640 LOCATE 25,1:INPUT"Press Enter to continue";AS

2650 GOTO 260

2860 ON ERROR GOTO 2900

2870 CLS:KEY OFF

2880 INPUT"Do you need help (Y/N) ";AS

2890 IF Ag="y" OR As="Y" THEN GOSUB 2960

2900 PRINT"BASIC has trapped error number ";ERR;" in line ";ERL
2910 PRINT:PRINT"Consult your IBM BASIC manual’s appendix A for an
explination”

2920 PRINT"of this error number"

2930 PRINT:PRINT"Note that improper operation may occur”

Release 1.0 A — B

2940
2950
23960
2970
2980
2990
3000
3010
3020

3030
3040

3050
3060
3070
3080
3090
3100
3110

3120
3130
3140
3150
3160
3170
3180
3190
3195
3200
3210
3220

INPUT"Press Enter to restart program ",AS

RUN

OFEN "comhelp.txt"” FOR INPUT AS #1

C=0

IF EOF(1) THEN 3020

LINE INPUT #1,As

PRINT A3

C=C+1:IF C>20 THEN 3040 ELSE 2980

INPUT "Press Enter to continue ",A8:LOCATE 23,1:PRINT
SPC(30):LOCATE 23,1

RETURN

C=0:INPUT"Press Enter to continue ",A$:LOCATE 23,1:PRINT
SPC(30):LOCATE 23,1

GOTO 2980

CLS

PRINT"1., Quit — Return to DOS (return tc menu choices)"
PRINT"2. Quit - Stay in BASIC (modify program)"”

PRINT"3. Restart program"”

PRINT:INPUT"Enter vour choice (1-3) ";AS

IF As="1" THEN INPUT"Are your sure (Y/N) ";08:IF Q38="y" OR
Qs="Y¥" THEN SYSTEM

IF As="2" THEN END

GOTO 260

X=Y%(0) AND 32:IF X= 32 THEN PRINT"Not connected to Westnet
RETURN

' ——— Synchronization point to point -—-

STRY=1

PRINT #2,CHRS$(0);

LOCATE 6,1:PRINT "Transmitting Sync byte — ";STRY;SPC(10};
GOSUB 1010

IF I>1 THEN SFAIL=0:GOTO 260

STRY=STRY+1:IF STRY>8 THEN SFAIL=1:GOTO 260 ELSE 3130

Release 1.0 a -7

Appendix B : IBM PC Communications Sample Program

This program is designed to work with the AST (C-232 Advanced
Communications Card. The program communicates with a PC connected
to port B (J3) of the CC—-232 card. The AST handlers are written in
assembly language and are accessed via the BASICA CALL statement.

10 ON ERROR GOTO 990

20 CLS:KEY OFF

30 INPUT"Do you need help (Y/N) ";AS$

40 IF Ag="y" OR Ag="Y" THEN GOSUB 1050

50 ’ This program uses the AST—-232 card’s port B for communications
60 ' Purpose:

70 ' To allow the user to remotely start and stop a PC 700/3900/1100
80 ' by overriding the keyswitch position,.

90 *

100 ' The processor used must support the Keyswitch override command
and

110 ' must have its Keyswitch in the Run/Modify Position. This
program

120 ' can, from the Run/Modify position change the processor from
130 * Run/Modify to Stop/Program mode and back.

140 °

150 CLS

160 KEY OFF

170 LOCATE 12,20:PRINT"Loading Assembly Drivers"”

180 DEF SEG=&H3F54

190 BLOAD "COMINTP.BAS",O

200 CLS:PRINT"Keyswitch Override";TAB(70);"V1,3a"

210 PRINT:PRINT" HWestinghouse Electric Corporation — 1985"

220 LOCATE 10,1

230 PRINT"O,. 300"

240 PRINT"1,. 1200"

250 PRINT"2. 2400"

260 PRINT"3., 4800"

270 PRINT"4,. 900"

280 PRINT"S. 19200"

285 PRINT"6. Quit - Return to DOS (return to menu choices) "

287 PRINT"7. Quit — Stay in BASIC (for program modifications)

290 PRINT:INPUT"Enter Baud rate ";A%

292 IF A%=6 THEN INPUT"Are vou sure (¥Y/N) ";Q8:IF Q8="y" OR Q&="Y"
THEN SYSTEM ELSE 200

294 IF A%=7 THEN END

300 FLAG=1

310 B%=0:C%=2

320 LET COMINTP=gH311

330 * x%xx Load Baud Rate to AST CC—-232 card »*xx

340 CALL COMINTP(A%,B%.(C%)

350 'x*xx Reset pointer to Assembly language program for serial
communications

360 COMINTP=0:C%=0

370 A%=0:B%=—-32251

380 GOSUB 910

390 CALL COMINTP(A%,B%,C%)

Release 1.0 B -1

400 GOSUB 930

410 * =xx check Keyswitch position %%

420 X= (C% AND 256:IF X>0 THEN KYs="stop/program

430 ¥= C% AND 512:IF ¥X>0 THEN KY&="run/program protect”
440 X= C% AND 1024:IF X>0 THEN KYS$="run/modifvy"

450 IF A%=255 THEN KY¥$="unable to read”

460 IF A%=255 THEN STATS="comm fail"

470 T=C% AND 2048:IF T>0 THEN STATS="fault" ELSE STAT3$="0k"
475 IF A%=255 THEN 620

477 GOTO 620

480 °

490 * %x% Check if Keyswitch is presently overriden %%

500 -

510 B%=—-32249

520 GOSUB 910

530 CALL COMINTP(A%,B%.,C%)

550 GOSUB 930

570 ¥X= C% AND 1:1IF X>0 THEN 0OV=1 ELSE 0OV=0

580 X= C% AND 2:IF X>0 THEN RP=1 ELSE RP=0

600 IF OV=0 THEN MODES$="Override OFF":ELSE MODEs="Override ON"
605 IF RP=1 THEN STATg="Warning — CPU retest pending - Turn
keyswitch to stop to ¢lear”

620 CLS:PRINT"Keyswitch Status Display":LOCATE 5,1

630 PRINT"Status - ";8TATs

640 PRINT"Keyswitch - ";KY¥$

650 PRINT"Mode - ";MODES; :IF MF=1 THEN PRINT " - ";C% ELSE
PRINT

660 PRINT:PRINT"1. Stop Processor":PRINT"2. Start
Processor":PRINT"3. Re-read Keyswitch position”:PRINT"4, Quit -
Return to DOS"

670 PRINT"S. Quit — Return to BASIC"

680 PRINT"6., Change BAUD rate”

690 PRINT"7. Retest CPU"

700 PRINT:INPUT"Enter your choice ";CHOICE

710 IF CHOICE=5 THEN END

720 ON CHOICE GOTO 730,790,370,870,900,200,1150
730 ’'*¥x%xx%x Stop Processor *xx

740 A%=3:B%=—-32249:C%=16

750 GOSUB 910

760 CALL COMINTFP(A%,.B%.,C%)

770 GOSUB 930

780 GOTO 370

790 'xxx Start Processor *xx

800 A%=3:B%=—-32249:C%=0

810 GOSUB 910

820 CALL COMINTP(A%,B%.C%)

830 GOSUB 930

840 LOCATE 22,1 :PRINT"Pausing to allow remcte PC to complete retest
cycle”

850 FOR I=0 TO 4000:NEXT

860 GOTO 370

870 INPUT"Are you sure (Y/N) ";Q8

880 IF Qg="Y" OR Q8="y" THEN SYSTEM

890 GOTO 370

900 END

Release 1.0 B -2

Mo

910 LOCATE 25,30:PRINT"COMMUNICATING";

920 RETURN

930 LOCATE 25,30:PRINT SPC(15);

940 RETURN

990 PRINT"BASIC has trapped error number ";ERR;" in line ";ERL
1000 PRINT:PRINT'"Consult your IBM BASIC manual’s appendix A for an
explination"

1010 PRINT"of this error number” »
1020 PRINT:PRINT"Note that improper operation may occur”
1030 INPUT"Press Enter to restart program ",A$

1040 RUN

1050 OPEN "Kevhelp.txt” FOR INPUT AS #1

1060 C=0

1070 IF EOF(1) THEN 1110

1080 LINE INPUT #1,AS

1090 PRINT As

1100 C=C+1:IF C>20 THEN 1130 ELSE 1070

1110 INPUT"Press Enter to continue ",AS

1120 RETURN

1130 C=0:INPUT"Press Enter to continue " ,AS

1140 GOTO 1070

1150

1160 ' xxx Retest CPU Routine *xx

1170 7

1180 ’'set the 2nd bit of the low byte of address 8205H
1190

1200 A%=3:B%=-32251:C%=17

1210 GOSUB 910

1220 CALL COMINTP(A%,B%.C%)

1230 GOSUB 930

1240 LOCATE 22,1 :PRINT"Pausing to allow remote PC to complete retest
cycle”

1250 FOR I=0 TO 4000:NEXT

1260 GOTO 370

Release 1.0 B - 3

g

Appendix C : IBM PC Communications Sample Program — MESGEN, BAS

This program is designed to operate with the AST CC-232 Advanced

Communications Card, This program will allow the user to enter
ASCII messages from the Keyvboard, edit them and up/download these
messages directly to the PC memory. The program will convert the

ASCII characters, then format a proper message to the PC,

10 CLS

20 KEY OFF

30 FOR I=1 TO 10

40 KEY I,""

50 NEXT I

60 DIM B13(256)

70 DIM E%(Z256)

80 DIM Eg(256)

90 DBEF SEG=&H3F54

100 BLOAD "COMINTP.BAS",0
110 LET CONFIG1=gH311

120 A%=4

130 Bg=0

140 C%=2

150 CALL CONFIG1(A%.B%.C%)
160 CLS

170 SCREEN 2

180 PRINT:PRINT: PRINT ,,"WESTINGHOUSE ELECTRIC

190 PRINT ,." NUMA LOGIC™

200 PRINT:PRINT ,." PC-700/900/1100"

210 PRINT , " MESSAGE GENERATION PROGRAM"
220 LOCATE 10,17,0,7,7

230 PRINT " MAIN MENU"

240 PRINT:PRINT:PRINT ,,"1 ——— NEW MESSAGE"

250 PRINT:PRINT ,,"2 —————— REVIEW AND EDIT MESSAGE"
260 PRINT:PRINT ,,"3 ————— DIRECTIONS™

265 PRINT:PRINT,,"4 ————— QUIT"

270 O8=INKEYS:IF 0s8="1" THEN 290

275 IF 0§="3" THEN 2300

277 1F 0§="4" THEN SYSTEM

280 IF 0g="2" THEN 1510 ELSE 270

290 SCREEN O :COLOR 0,7:LOCATE 1,30,0,7,7:FPRINT " NEW MESSAGE
MCDE" :COLOR 7,0

300 PRINT:PRINT ; "ENTER MESSAGE TO BE DISPLAYED BY ASCII TRANSMIT
FUNCTION"

310 PRINT ; "(HIT [ENTER] TO RETURN TO MAIN MENU)"

320 COLCOR 0,7
330 PRINT ,,,,.

340 PRINT ,.,. "

350 PRINT ,,.,, "

360 COLOR 7,0

370 IF T2g="Y" THEN 15860

380 LOCATE 11,30,0,7,7:PRINT "BCODES":PRINT

390 PRINT “BO —— Return from subroutine”
400 PRINT "B1XN ——— Print character X, N times (N<L2Z535)"
410 PRINT "BZ¥ ——— Print lower two digits of HR pointed to by

Release 1.0 c -1

R

pointer X"

420 PRINT "B3X —-—- Print +/— five digits of HR pointed to by
pointer X"

430 PRINT "B4X ——— Print lower four digits of HR pointed to by
pointer X"

440 PRINT "“BS5X ——— Print five digits of HR pointed to by pointer X"
450 PRINT "B6X ——— Print five digits (ldng zeros blanked)} of HR
pointed to by pointer X"

460 PRINT "B7X —-- Jumped to HR pointed to by pointer X"

470 PRINT "BS —~—— Message end"

480 IF Og="2" THEN 1580

490 IF T3§<>"Y" THEN 550

500 LOCATE 5,1,0,7,7:COLOR 0,7

510 PRINT ,,.,,,:PRINT ,,,,,:PRINT ,,,,,
520 COLOR 7,0:LOCATE 9,1,0,7,7:PRINT "~

"

530 LOCATE 22,1,0,7,7:PRINT"
540 PRINT *

550 COLOR 0,7
560 LOCATE 5,1,1,7,7:A8="":P=1:R=CSRLIN:C=POS{N):HFP=1
570 T$=INKEYS:IF Ts<>"" THEN T=ASC(Tg) ELSE 570
580 IF F=1 THEN COLOR 7,0:LOCATE 8,1,0,7,7:PRINT
* ELSE 600
590 COLOR 0,7:LOCATE R,C,0,7,7:F=0
600 IF P>HF THEN HP=F
610 IF T>20 AND T<93 THEN PRINT T$;:Bl18(P)=T§:P=P+1:GOTO 690
620 IF T=13 AND P=1 AND 0g="1" THEN 170
630 IF T=13 AND P<3 AND 08="1" THEN 570
640 IF T=13 AND 05="2" THEN S00
650 IF T=13 AND 08="1" THEN I=0:GOTO 860
660 IF LEN(T$)=2 THEN T=ASC(RIGHTS(Ts$.1))
670 IF T=77 THEN P=P+1:GO0TO 770
680 IF T=75 THEN P=P-1:GOTO 810 ELSE 570
690 IF P<=2 THEN 770
700 TPs="":TP8=Blg(P-2)+B1s(P-1)
710 IF FL=1 THEN 730
720 IF TPs<"Bz2" OR TP$>"B7" THEN 770 ELSE FL=1
730 IF RIGHTS(TPS$,1)>="0" AND RIGHT$(TP%,1)<="9" THEN 770
740 IF RIGHT3(TPs,1)=" " THEN FL=0:GOTO 770
750 B1g(P)=B1lg$(P-1):B18(P-1)=" ":PRINT CHR$(29);B1s(P-1);B1s(FP);
760 C=C+1:P=P+1:FL=0
770 C=C+1:IF C=61 AND R=5 THEN R=6:C=1
780 IF R=6 AND C=61 THEN R=7:C=1
790 IF R=7 AND C=61 THEN C=60:P=255
800 GOTO 840
810 C=C-1:IF C=0 THEN C=1:P=0
820 IF R=6 AND C=1 THEN R=5:C=60
830 IF R=7 AND C=1 THEN R=6:C=60
840 LOCATE R.,C,1,7,7
850 GOTO 570
860 IF HP<Z THEN 950
870 IF B1&(HP-2)="B" AND Bl1s(HP-1)="8" THEN 950
871 K4=0:P2=HP-1

Release 1,0 cC - 2

873 WHILE ASC(B1g(P2))=32:P2=P2—-1:K4=K4+1:WEND

875 IF B1s(P2)="8" AND B1s(P2-1)="B" THEN HP=P2:GOTO 950

877 C=C—-K4:P=P-K4:GOTO 880

880 BEEP:COLOR 7,0:LOCATE 8,1,0,7,7:PRINT "A [B8] CODE MUST BE USED
FOR END OF MESSAGE"

8390 COLOR 0,7:F=1:GOTO 840

906 IF HP<Z THEN 950

905 IF HP<HPR-2 THEN 950

910 IF HP>HPR-2 AND B1$(HP-1)="B" AND B1S(HP)="8" THEN 850
920 IF HP>HPR AND B1$(HP-2)="B" AND B1§(HP-1)="8" THEN 950
921 P2=HP-1:K4=0

922 WHILE ASC(B18(P2))=32 :P2=P2-1:K4=K4+1:WEND

924 IF Bls(Pz)="8" AND Bls(P2-1)="B" THEN 950

925 C=C-K4:P=P-K4

940 GOTO 880

950 IF 08="2" AND HF>HPR THEN H=HP ELSE H=HFR

860 IF 0O8="1" THEN H=HP

970 FOR I= 1 TO H

980 Ag=Ag + Bis(I)

990 NEXT I

1000 COLOR 7,0

1010 IF ©Og="2" THEN 1060

1020 LOCATE 9,1.,0,7.,7

1030 INPUT "AT WHAT HR REF NO. DO YOU WANT MESSAGE TO START";A
1040 IF A >0 AND A<5000 THEN 1060 ELSE LOCATE 5,1.,0,7.7

1050 GOTO 1030

1060 K=0:I=0

1070 WHILE E%(I) <> -18432

1080 K=K+1:I=I+1

1080 Cs=MIDS(AS,.K,1)

1100 IF D13="B" AND Cs<"9" AND C$>="0" THEN E%(I-1)=E%(I-1) AND -
256:Tg=D15+Cs:GOTO 11390

1110 C%=256%ASC(C3)

1120 K=K+1:D$=MIDS(Ag&,K,1)

1130 IF Cs="B" AND D$<"9" AND D§>="0" THEN T$=C5+D$:GOTO 1190
1140 IF Dg="B" THEN D1$=Ds

1150 D%=ASC(DS)

1160 E%(I)=C% + D%

1170 WEND

1180 GOTO 1350

1130 IF T8="BO0" THEN E%(I)=—-20480:GOTO 1070

1200 IF Tg="Bl" THEN K=K+1:E%(I)= — (20224 + ASC(MIDS(AS,K,1)))
:GOTO 1280

1210 IF T$="B2" THEN E%(I)=-193968:GOTO 1280

1220 IF TS="B3" THEN E%(I)=-19712:GOTO 1280

1230 IF Ts="B4" THEN E%(I)=-19456:G0TO 1280

1240 IF T$="B5" THEN E%(I)=-19200:G0TO 1280

1250 IF Tg$="B6" THEN E%(I)=-18944:GOTO 1280

1260 IF Ts$="B7" THEN E%(I1)=-18688:GOTC 1280

1270 IF T$="B8" THEN E%(I)=-18432:GOTO 1070

1280 TBg=""

1290 WHILE MIDs(AS,K,1) & ¢
1300 K=K+1

1310 TBS=TBS+MIDS(AS.K,1)
1320 WEND

Release 1.0 cC - 3

1330 I=I+1

1340 E%(I)=VAL(TB3):G0TO 1070

1350 L=I:K=0

1360 FOR I= & TO A+L-1

1370 K=K+1

1380 A%=1

13390 Bg=I-1

1400 C%=E%(K)

1410 COMMPROC=0

1420 CALL COMMPROC{A%.B%.,C%)

1430 NEXT I

1440 LOCATE 22,1,0,7,7:PRINT "MESSAGE MEMORY LOCATIONS HR";A;" ———
HR";A+L—-1

1450 IF 0%="2" THEN PRINT "DO YOU WANT TO REVIEW ANOTHER MESSAGE
(Y/N)?":GOTO 1490

1460 PRINT "DO YOU WANT TO INPUT ANOTHER MESSAGE (Y/N)?"
1470 T3¢$=INKEY$:IF T38="Y" THEN 4380

1480 IF T34="N" THEN 160 ELSE 1470

1490 TZ2$=INKEYS:IF T28="Y" THEN 1550

1500 IF T25="N" THEN 160 ELSE 1490

1510 SCREEN 0 :P1=0

1520 LOCATE 2,25,0,7.,7

1530 COLOR 0,7

1540 PRINT "REVIEW AND EDIT MESSAGE MODE"

1550 LOCATE 5,1,0,7,7:G0TO 320

1560 LOCATE 22,1,0,7,7:PRINT

1570 PRINT "

1580 LOCATE 4,1.0,7,7

1590 INPUT "ENTER MESSAGE HR STARTING POINT (0 — MAIN MENU)";T
1600 IF T=0 THEN 170

1610 IF T<1 OR T>»5000 THEN LOCATE 4,1,0,7,7:GOTO 1590

1620 I=0:A=T:C%=0

1630 WHILE C%<>—-18432

1640 I=I+1

1645 IF I>=256 THEN 2100

1650 A%=0:B%=T-1

1660 CALL COMMPROC(A%,B%.,C%)

1670 IF C%<0 THEN 1730

1680 L%=C%/256

1680 Lg§=CHRs(L%)

1700 Bis(I)=Lg

1710 I=I+1

1720 J%=255

1730 H%=C% AND J%

1740 H$=CHRS(H%)

1750 B1g§(I)=HS$

1760 T=T+1

1770 WEND

1780 GOTO 1930

1790 IF C%=—-20480 THEN B1g$(I)="B":I=I+1:B1s(I)="0": GOTO 1760
1800 IF C%=-19968 THEN Big(I)="B":I=I+1:B1s(I)="2":GOTO 1880
1810 IF C%=—-19712 THEN B1s$(I)="B":I=I+1:B1§(I)="3":GOTO 1880
1820 IF (C%=-19456 THEN B1s(I)="B":I=I+1:B15(1)="4":GOTO 1880

Release 1.0 ¢ - 4

1830 IF C%=-19200 THEN B1g8(I)="B":I=I+1:B1$(I)="5":GOTO 1880
1840 IF C%=-18944 THEN B18(I)="B":I=I+1:B1g(I)="6":GO0TO 1880
1850 IF C%=-18688 THEN B1$(I)="B":I=I+1:B1s(I1)="7":GOTO 1880
1860 IF C%=—-18432 THEN B1$(I)= B :I=T+1:B18(I)="8":GOTO 1760
1870 B1s(I)="B":I=I+1: B1¢(I)= :I=I+1:B18(I)= CHRS(C% AND J%)

1880 T=T+1:B%=T-1:TEMP&="

1890 CALL COMMPROC(A%,B%.C%)

1900 TEMP$=STRS(C%)+" ":Z=LEN(TEMP$):TEMP$=RIGHTS(TEMPS,Z-1):N=1
1910 WHILE B1s(I)<>" ":I=I+1:B18(I}=MID$(TEMPS,N,1)
1920 N=N+1:WEND:T=T+1:GOTO 1630

1930 LOCATE 5,1,0,7,7:COLOR 0,7:R=5:C=1

13940 Ag="":L1=I

1950 FOR I=1 TO L1

1960 PRINT B1s(I};

1970 IF ASC({ B1s(I))=0 THEN PRINT CHR$(29);:C=C-1
1980 C=C+1

1390 IF R=5 AND C=61 THEN R=6:C=1

2000 IF R=6 AND C=61 THEN ER=7:C=1

2010 LOCATE R,C,0,7,7

2020 AS=Ag+Bi1s(I)

2030 NEXT I

2040 HPR=LEN(A3):GOTO 560

2100 BEEP:LOCATE 23,1,0,7,7:PRINT "B8 CODE NOT FOUND ——-— TRY AGAIN

(Y/N)?"

2110 G13=INKEY$:IF G1g8="N" THEN 170

2120 IF G1g¢><"Y" THEN 2110

2130 LOCATE 23,1,0,7,7:PRINT "

2140 GOTO 1580

2300 SCREEN 0:COLOR 0,7

2310 LOCATE 2,23,0,7,7:PRINT "MESSAGE GENERATION PROGRAM"
2320 COLOR 7,0:LOCATE 4,1,0,7,7

2330 PRINT " This ASCII transmit program is a first
from"; :COLOR 16,7:PRINT" EDHWEA (weed in pig latin) Soft";
2340 PRINT "ware Inc";:COLOR 7,0:PRINT". The software products

company that brings vou close to dquality soft-— ”;
2350 PRINT '"ware at extremely reasonable prices”;:COLOR 16,7: PRINT

(FREE)";:COLOR 7,0:PRINT ". Yes, vou wont find our software copy”
2360 PRINT "protected — WE DON'T HAVE TOO.'
2370 PRINT " This program enhances the ASCII transmit function

(PC-700/900/1100) thru "

2380 PRINT "facilitating message entry. It allows a message to be
typed in directly (as a "3

2390 PRINT "typists would) instead of entering ASCII characters two
at a time into PC hold- ";

2400 PRINT "ing registers. The string is then analyized, including
any B codes, formated and’;

2410 PRINT " placed within PC memory starting at any user desired
location. There is alsc a ";

2420 PRINT '"review and edit mode, allowing existing messages to be
extracted,displayed, ed- ";

2450 PRINT "ited and then returned to the programmable controller,
2460 PRINT "¢ Some notes on message entry, all end of messages
require a B8 code and when";

2470 PRINT " using B2-B7 codes a space must be inserted after

Release 1.0 C -5

N

prointer. Format (pointer in "y

2480 PRINT "brackets) is as follows: Bx[xxx][space] Program
prompts user if these two ";

2490 PRINT "items are left out. These and other safegaurds are
included. However,not all "

2500 PRINT "protective measures may have been taken., If program
fails, rerun, no damage will";

2510 PRINT " have occured because all messages are maintained within
programmable contoller ";

2520 PRINT "memory."

2530 PRINT "¢ Obviously, the more messages the more beneficial
this program, Its intent is";

2540 PRINT " to service those applications redquiring much production
and management report—";

2550 PRINT "ing. WE HOPE YQU LIKE IT titirv,

2560 PRINT * HIT [ENTER] TO RETURN TO MAIN MENU"

2570 G38=INKEYS§:IF G33<>"" THEN G3=ASC(G3%) ELSE 2570

2580 IF G3=13 THEN 1680 ELSE 2570

Release 1.0 ¢ - 6

}Appendix D: Assembly Language Calls from IBM BASICA

This section describes how to communicate with a programmable controller using
a communications driver written in assembly language.

The programmer should be familiar with IBM BASICA,

If the programmer wishes to modify the assembly language program, they should
also be familiar with Micro—-Soft MACRO Assembler and Micro—Soft MS-LINK.

General

The IBM BASICA interpreter permits subprograms to be "called"” from within the
BASICA environment. The syntax is:

CALL programname(variable#l ,variable#2,...,variablef#N)

Before BASICA can transfer control to "programname"”, BASICA must Know where
"programname'" is in memory. Two BASICA statements are used to define the
location of a subprogram, "DEF SEG=", and "programname =",

"DEF SEG=" will define the segment (8088 term) while "programname=" defines
jthe offset within that segment,.

s

Numa—Logic Communication Subprogram "DATACOM"
To use this program, set up the segments and offsets as:

DEF SEG=&H3F54
PCLINK =&H230
CHGPARA=&H32A

Example of use of "DATACOM"

10 DEF SEG =&H3F54

20 KEY OFF

30 CLS

35 ’ *x load the file DATACOM.BAS xx

40 PRINT"Loading Assembly Language Drivers"

50 BLOAD "DATACOM,BAS",O

60 CLS

70 INPUT"BAUD RATE 1-1200 4-3S600 ";A%

120 ' =% gset default parity to odd =x
130 B%=0

)135 * %% transfer control to DATACOM,.BAS xx
140 CHGPARA=&H32A

149 * =%x test to see if it really is therel =x
150 IF PEEK(CHGPARA)<>85 THEN PRINT"PROGRAM MALFUNCTION":STOP

Release 1.0 D -1

155
160
165
170
200
300
310
320
325
330
335
340
350
400
410
500
505
510
520
530
537
540
550
560
570

' %% if so, initialize for parity, and baud rate xx

CALL CHGPARA(A%,B%)

' %% if A% is not zero, invalid baud or parity selected *x
PRINT A%.B%

INPUT "opcode ";0P%

INPUT "address ";AD%

INPUT "data ";DA%

‘%% entry point of communications handler =
PCLINK=g&H230

IF PEEK(PCLINK)<>85 THEN PRINT"PROGRAM MALFUNCTION":STOP
CALL PCLINK(OP%,AD%,DA%)

PRINT HEX$(OP%),AD%,DA%

INPUT "CONTINUE (Y/N) ";AS

IF Ag="Y" OR As="y" THEN 500 ELSE 300

'xxxxx START OF BLOCK DUMP x%x%x

OFP%=0:CLS

INPUT"ENTER STARTING ADDRESS ";ST%

INPUT"ENTER NUMBER OF WORDS ";NU%

FOR J%=5ST% TO ST%+NU%-1

OP%=0

CALL PCLINK(OP%,J%,DA%)
PRINT"ADBRESS ";J%;" ";DA%,HEX$(DA%)
NEXT

GOTO 400

Release 1.0 D -2

Appendix E : Serial Port Wiring Diagrams

This se
various
includi

Before
basics

l.

Release 1.0

ction will describe the cables necessary to connect together
pieces of Numa-Logic Hardware to computers and modems
ng:

Computer to PC direct

Computer to PC via modem (point to point)

Computer to Westnet II PCI

PC1100 slave to modem (pin 8 carrier detect)

PC1100 slave to modem (pin 6 carrier detect)

PC1100 port transmit master to modem (pin 4 carrier enable)

we cover the actual cables necessary, let's cover some of the
of RS-232 cabling:

RS-232 cables are usually terminated by 25 pin connectors
that have pins or sockets. Connectors with pins are called
"male" and connectors with sockets are called "female". A
male connector always plugs into a female connector and vice
versa.

Although you can always physically connect a male RS-232
connector to a female RS-232 connector, each of the two
connectors must also be opposite in electrical connections
too. The two types of electrical connections available for
RS-232 ports are described as:

- Data Terminal Equipment (DTE) configuration
- Data Communications Equipment (DCE) configuration

DTE devices can connect only to DCE devices. The only
difference between the two is how the 25 pin connectors are
wired. You can easily reconfigure a port to its opposite
configuration by plugging in a "Null Modem" adapter or cable.
A "Null Modem" adapter cable is described later.

Although the connector may have 25 terminal points, rarely
are they all used. Most typical RS-232 connectors use 9 or
less. These most common points are:

Name DTE pin DCE pin Common Abbreviation
Transmit data 2 3 TxD
Receive data 3 2 RxD
Request to send 4 5 RTS
Clear to send 5 4 CTS
Data Set Ready 6 20 DSR
Data Carrier Detect - 8 DCD
Data Terminal Rdy 20 6 DTR

Note that "Data Carrier Detect" is not shown as having a pin

on a DTE configured device. This is because a carrier detect
line implies a modem, and as such, should always be wired as

DCE.

Computer to PC direct (Standard Null Modem connection)

IBM PC/Apple][+ to PC700/900/1100

Computer Programmable Controller

2 mmm e 3

3 e 2

4 + + 4

1 !

5 + + 5

6 —————— e 20

T m——————————— - 7
20 ———mm 6

Since both the computer and the programmable controller are wired
for DTE, a null modem cable is necessary for connection. When using
certain software packages, the IBM PC may need for its pin 8 to be
pulled high in order to operate. If this is the case, use the cable
configuration shown next instead of the one above.

Radio Shack Model II to PC700/900/1100

Computer Programmable Controller
S IIIIIIIITITTTTTT S
4 + + 4
! !
5 + + 5
6 +rmmm e 20
5 +
T ——— e 7
20 ——m——— 6

As was the case with the IBM PC and Apple, a null modem cable is
necessary to connect two DTE devices together. The Radio Shack
system also requires that its DCD line be pulled high. Since pin 20
of the PC will always be high (if the PC is functional), then we can
meet this criteria be connecting the programmable controllers pin 20
to the Radio Shack computer's pin 8 (also pin 6).

Release 1.0 E - 2

Computer to Modem (point to point)

IBM / Apple][+ / Radio Shack II,12,16

Computer Modem Modem PC
2 e 2 A 2
J e e 3 TX + ————- Rx+ 3 - 3
4 e 4 TX - ~———- Rx- 4 e 4
5 - 5 5 e 5
6 ———m e 6 RX + ————- Tx+ O ——— 6
T e 7 RX - —=——- TX~- 7 e 7
8 - 8 8 ——— e 8
20 m——mme e 20 20 —— e 20

Since the modem is configured as DCE and the PC and computer are
DTE, a simple straight through cable is all that is required to
connect both together. The modem shown is assumed to be a 4 wire,
full duplex type. Full duplex modems are easier to use, but are not
necessary as long as the designer follows these restrictions:

1. If a half duplex modem is being used, data cannot travel both
directions simultaneously. With Westinghouse programmable
controllers (PC700/900/1100), half duplex communications
media is acceptable if:

- both modems have adjustable RTS/CTS turnaround times.

- that the PC's being used support modem controls. If
your PC700 or PCO00 was built after 1982 (executive V3.x
on the PC700 or V4.x on the PC900), you are probably OK.

,) If your PC1100 has executive software V2.3 or later, you
are OK.
2. The modem's RTS and CTS lines are wired to the programmable

controller's RTS and CTS. In effect, when the PC receives a
message from the communications line, it will be prevented
from responding until its CTS line is brought high. This

is known as line turnaround. Full duplex modems and line
drivers (both 2 wire and 4 wire type) do not require modem
control signals.

Computer to Westnet II PCI

IBM / Apple J[+ / Radio Shack II,12,16

Computer PCI Loader Port

2 3

3 e 2

4 e 5

5 e 4

6 ——— - 20

T e 7
20 e 6]

. Both the computer and PCI loader port are configured as DTE, so a
) null modem cable connection is necessary.

Release 1.0 E - 3

Programmable Controller to Westnet ITI PCI

PC PCI PC port
S 2
T 3
4 e 4
O 5
R 6
S — 7

20 ~———m e 20

The PCI PC port is designed for direct connection to a PC using only
a straight through cable.

Programmable controller to Westnet II PCI via modem

Westnet PCI Modem Modem PC

2 e 3 2 —m——mm e 2
3 mmmm e 2 TX 4+ ——m—— Rx+ 3 e 3
4 e 5 TX = ====- Rx~ 4 - 4
5 - - 4 5 5
6 mm—mmm e 8 RX + ~———- Tx+ 6 - 6
T e 7 RX = —=——- Tx— T e 7
8 20 8 ———— 8
20 mmmmmm - 6 20 ——— 20

If the PC is to be located more than 50 feet from the PCI, a modem
or line driver should be used. Note that the connection from the
PCI PC port to the modem utilizes a null modem configuration, while
the PC to modem connection is a simple straight through cable.

This configuration can be used to extend the distance of the

Westnet II data highway beyond the 6km limitation. Multiple drops
can be located remotely from the central coaxial based highway when
channel splitters and statistical multiplexers are used. The
following wiring diagram shows how two drops may be remotely located
from the PCI.

Multiple Remote drops off the Westnet II data highway

Fom + Fm + Fom e +
! PCI +Subdrop 0 ---+Asynchronous ! ! ! to remote
! ! !Channel +-——-+ Modem +--station --+
! +Subdrop 1 ---+Splitter ! ! ! !
R + Fmm + e + !
!
Fmm + o e + e + !
1PC 1 Fmm e +Asynchronous ! ! ! !
Femm———— + Fom——— + !Channel +-———+ Modem +———em—m—————e +
!PC 2 +-———+Splitter ! ! !
Fmm—— + Fm e + Fe—_— +

Release 1.0 E - 4

PC1100 Slave to modem (assumes pin 8 as the carrier detect)

Version 2.1

PC1100 slave Modem
2 mmmm 2
3 3
4 e 4
B 8
6 ——m— 6
T o e 7
20 ——m e 20
Version 2.3
PC1100 slave Modem
2 e 2
3 3
4 4
5 e 5
6 ——— e 8
T e 7
20 ———— 20

PC1100 Slave to modem (assumes pin 6 as the carrier detect)

Version 2.1

PC1100 slave Modem
2 mm 2
3 e 3
4 4
B e 6
!
6 —+
T e 7
20 ——— e 20
Version 2.3
PC1100 slave Modem
22— 2
3 e 3
4 e 4
5 e 5
O ~——mr e ———— 6
T e 7
20 = 20

Release 1.0 E -5

)

PC1l100 Port Transmit Master using modems

PC1100 master Modem

2 e 2
3 mmm e 3
5 e 5
6 ———— 6
T o - 7
: om/ 24 c
4/’ u lea—————=— 4

This configuration must be used since the master modem must remove
the carrier just before the Port Transmit function is enabled. This
wiring diagram assumes that pin 4 of the modem is used to switch the
transmit carrier on and off. Read the modem's operating manual to
verify that this is the case. In-any event; wire the-24VDEoutput
to-the—appropriake carrier control line of the modem--for—proper

operation.

This cog/ guratzon is necessary since thé @sync" or, "éIear buffer"
pulge fr t@e/mas er PG*S plﬁ 20 lS/tOO short to-¥e detected by—a
modert’ s

TS dine. | Refér to sss&;pﬁ‘5 for m@:e/iﬁ%ormatranzﬁﬁ/£h1§

A
/Hflg%fa on.

/

LS

5

V2L ¢ the, ok To use KIS op PLe e JwiToH
CARK 2.

Release 1.0 E - 6

Appendix H: Apple 1[+ Assembly Language Calls

Apple Computer Assembly Drivers
for
Communication with
Westinghouse PC700/900/1100 Family

Description: These assembly language drivers are designed fto
interface a user program written in Applesoft BASIC to
a Westinghouse PC700/900/1100 processor. The wvarious
routines are described individually.

Hardware Overview and I/0 Addressing (Super Serial Card)

This program was designed to allow the Apple’'s 65302 microprocessor
access serial data arriving from an Apple Super Serial Card (SSC)
located in slot 1 of the computer. The routines also permit the
Apple to transmit data out of the Super Serial Card. To assist in
the understanding of these routines, the following memory address of
the Apple and SSC are explained.

Address (Hex)/(Decimal) Bit(s) Interpretation
C091/49297 DIPSKH1 0 Dip Switch 1 — 6 is off when 1, on
when Q
1 Dip Switch 1 — 5 is off when 1, on
when 0
4-7 same as above for 1-4 through 1-1
C092/49298 DIPSKHZz 0 CTS (pin 5 of serial port) true (-
) when 0

1-3 same as above for 2-5 through 2-3
5,7 same as above for 2-2 through 2-1
C098/49304 TDREG 0-7 ACIA transmit register
RDREG 0-7 ACTIA receive register
Note that both registers occupy
the same address space in the
Apple’'s memory map.
C099/49305 STATUS 0 parity error if 1
1 framing error if 1
2 overrun error if 1
3 ACIA recelive register has
character when 1

4 ACIA transmit register empty when
1

o DCD (pin 8 of serial port) true
when O

6 DSR (pin 6 of serial port) true
when 0O

7 Interrupt (IRQ) has occurred when
1. Note: interrupts are not used
by these routines.

C094/49306 COMMAND 0 1. Enable DTR (pin 20 of serial

port} if 1

Release 1.0 H -1

C08B/49307

Release 1.0

CONTROL

0-3

2. Enable receiver 1f 1

3. Enable all interrupts if 1

If 1, allow bit 3 of STATUS
register to cause interrupt.
Controls RTS, transmitter enable,
and transmitter interrupt. Note:
This program sets bit 3 and clears
bit 2 whenever the SYNC1 routine
is called. These bits are not
controlled by any other routine or
program, If both bkits 2 and 3 are
turned on simultaneocusly, a BREAK
signal is sent for the duration of
the time that bits 2 and 3 are
set.

Echo mode if 1., Note: This program
resets this bit.
Controls parity 0,2,4,6 none
1 odd

3 even
) mark
7 space

Controls Baud Rate

o

16 =
ext. clk.

50

75
109,92
134.58
150
300
600
1200
1800
2400
3600
4800
7200
9600
19200

HEOOMPOONO U WN -

When 1 use internal baud rate
generator. When 0 use external
clock.

Number of Data Bits 6 Number
0

0 7
1

1

S

Numbker of Stop Bits Bit

5
0
1
0
1
i
0 1
5 data bits 1 1
8 data + parity 1
all other 2

R

Butffer Locations used by Program

Address (Hex/Decimal)

7100728928
7101/28929
71027283930
7103728931
7104/28932
7105/28933

7106/28934
7107728935

7108728936
7109/28937
710A/28938
710B/28939
710C/28940
710D/28941
710E/28942
710F/28943
7110/28944
7111/28945
7112728946

7113/283947

7114728948
7115728949
7116/28950
7117728951
7118728951

7119728952
7114728853
711B/28953
711C/28956

711D/28957
711E/28958

Release 1.0

Name

Tx
Tx
Tx
Tx
Tx
Tx

Rx
Rx

Rx

Rx

Rx

Rx

OF
LA
HA
LD
HD
CK

OP
LA

HA

LD

HD

CK

Description

Start of transmit buffer. Opcode
Low byte of transmitted address
High byte of transmitted address
Low byte of transmitted data
High byte of transmitted data
Transmitted checksum

1st byte received from PC. Opcode
2nd byte received from PC. Low
address

3rd byte received from PC. High
address

4th byte received from PC. Low
data

5th byte received from PC. High
data

6th byte received from FPC.
Checksum

(Tx CK} — (Rx CK). Should be zero
Bvtes received pointer

Error code received from SYNCL1,
Should be zero.

Temporary register used by GSTA

Low byte of starting address used
by FCLEAR

High byte of starting address used
by FCLEAR

Low byte of ending address used by
FCLEAR

High byte of ending address used
by FCLEAR

Low byte of EOFP. (Temp location)
High byte of EQOP., (Temp location)
Low byte of HRRU, (Temp location)
High byte of HRRU, (Temp location}
Low byte of Low Ladder Checksum.
(Temp loc.)

Hi byte of Low Ladder ChecKsum.
(Temp loc.)

Low byte of Hi Ladder Checksum.
{Temp loc.)

Hi byte of Hi Ladder Checksum.
(Temp loc.)

Low byte of PC starting address
High byte of PC starting address
Low byte cof PC ending address

711F/28959
7126/28960

7121/28961

7122/28962

7123/28963

Release 1,0

High byte of PC ending address

Low byte decimal data used by
HEXCONV
High byte decimal data used by
HEXCONV

Low byte of PC starting address.
(FSTORE)
High byte of PC starting address.
(FSTORE)

—

Entry points of Assembly

Name

Svynecl
Chxsum
Hexconv
Xsum
Fclear
Incadr
Fdump
Zero
Fstore
DatalO
Bufinc
Gsta
Ptrsave
Bufeclr
Decadr
Comlink

Release 1.0

Address

26368(6700h)
24912(6150h)
23152(6240h)
24880(6130h)
26624(6800h)
24992 (61A0h)
26464(6760h)
24864(6120h)
26548(67B4h)
26112(6600h)
26976(6960h)
25088(6200h)
26720(6860h)
25184(6260h)
25172(86254h)
29440(7300h)

Calls
Description

Synchronizes with programmable controller
Error check returned data

Compute Hex value from decimal

Compute checksum

Clears a group of PC addresses

Increment PC address

Offload PC memory

Zero 7103h and 7104h, load 7100 with 1
Store data to PC

Transmit buffer, receive reply

Increment Apple buffer pointer

Get PC parameter table

Save buffer pointers

Clear Apple program buffer

Decrement PC address

Receives data from and prints hex on screen

Description of Apple Assembly Communications Routines

00
8]4]
99
29
SA
SE
9B
99
08

OE

98

DA

01
43

EB
00
06

10

EO
92
o]0]
0D
o8
10

Do

10

Name
Description:
7300~ AZ
7302 AS
7304— 8D
7307- AS
7309- 8D
730C— A9
730E— 8D
7311~ AD
7314— 29
7316~ FO
7318— AD
731B- 20
731E- AZ
7320- 20
7323— 18
7324~ 90
7326— AC
7329— 30
732B~ AE
732E— 18
732F- 90
7331— AY
7333- CD
7336— FO
7338— 20
733B— AD
733E- 18
733F- 90
7345-~ AD
7348— 60
Name
Description:

Release 1.0

Comlink

Receives characters from the serial port, converts them
to hex codes, and displays on the CRT screen. Baud
rate can be changed by writing to location
730DH/29453D, while parity can be controlled by writing
to 7308H/29448D.

LDX #$00
LDA #s00
CO STA $C099 iclear status register
LDA #8529 ;0dd parity, enable transmitter
CO STA SCQO9A ;lovad to command register
LDA #S9E ;9600 baud, 2 stops, 8 data bits
CQ STA SCO9B ;load to control register
C0 LDA $C099 iget status register
AND #3508 ;if bit 3 1s set, character has
; been recv’d
BEQ 87326 ;if not, go check kevboard for
; data
CO LDA s8C098 ;otherwise, get character from
; serial port
FD JSR SFDDA ;display accumulator as hex byte
; on CRT
LDX #3501 ;load space factor = 1
Fg JSR SF94A ;advance cursor by space factor
CLC ;set up unconditional Jjump
BCC §7311 sunconditional jump to 7311H
CQO LDY SCQO00 ;get Keyvboard Data Input
BMI §7331 ;MSB set? If so, Kevboard data
; received
CO LDX sC010 ;if not, clear Kevboard strobe
CLC iset up unconditional jump
BCC 87311 sunconditional jump to 7311H
LDA #4892 ;load ASCII code for 'control R
CQ CHMP sCQOQ0 ;jwas "R pushed?
BEQ 87345 ;1if so, then prepare to quit
FC JSR SPCS8 ;1f not, ¢lear screen
Co LDA 8C0O10 ;clear Keyboard strobe
CLC ;set up unconditional jump
BCC 87311 ;unconditional jump to 7311H
30 LDA SCGC10 ;clear Keyvboard strobe
RTS ;return to calling program
CHXSUM

Error checks received data by computing a checksum of
the first 5 bytes and comparing this checksum with the
6th byte, If the checksum does not match, the location
710CH will not edual =zero, To detect an invalid
checksum in the returned data, simply call this

[

6150~ Az 00 LDX #3500 ;clear pointer
6152— AD 06 71 LDA 7106 ;get first byte of received data
6155— 18 CLC ;clear carry
6156— 7D 07 71 ADC §7107,%X ;add to next bvte
6159~ E8 INX iincrement to next byte
615A— E0 04 CPX #3504 ihave all 5 bytes been added
; together?
615C- DO F7 BNE 36155 ;if not, get next byte
B15E— 38 SEC ;set carry
615F- ED 0B 71 SBC 8710B ;compare computed checksum with
; calculated
6162— 8D 0OC 71 STA §710C istore this difference at 710CH
6165 60 RTS ;return to calling routine
Name HEXCONV
Description: Routine to convert decimal data to hexadecimal, Uses
Apple Monitor call FS41H. To use, place low byte of
data at address 7120H/28960D and high byte of data at
7121H/28961D.
6240— AD 21 71 LDA s7121
6243— AE 20 71 LDX §7120
6246— 20 41 FS JSR s$F941
6249— 60 RTS
Name stored with HEXCONV
Description: Entry point for a routine to simply take the received
data from the PC, convert the 4th and 5th byte to Hex,
and display on screen.
624A— AD OA 71 LDA $710A
624D— AE 09 71 LDX 37108
6250— 20 41 F9 JSR SF941
6253— 60 RTS
Name DECADR
Description: Decrements address pointer used to communicate with PC.
6254— 18 CLC
6255— CE 01 71 DEC §7101 ;decrement low byte of address
; pointer
6258- FO 01 BEQ 86258 ihew value = 0? If so, continue
625A— 60 RTS ;otherwise, return to calling
; routine
625B— CE 02 71 DEC §7102 ;decrement high byte of address

Release 1.0

routine, then test 710C for a non-zero value, If the
value at this location is not equal to zero, the
received data checksum was invalid,

5, .
S

00
01
40
02
o
EO
40
El
00
1E
50
1F
00
00
EOQ

EO
€0
06
AO

EC

00
(]9]

01

04

F7
05

625E— 60
Name
Description:
6260— AS
6262— 8D
6265— A9
6267 8D
626A~ A9
626C— 85
626E—- A9
6270— 85
6272— A9
6274— 8D
6277— A9
6279— 8D
627C— A0
627E~ A9
6280—- 91
6282~ C8
6283— 91
6285-—- 20
6288— BO
628A— 20
628D~ 18
6Z28E— 90
6290 60
Name
Description:
6130- A2
6132—- AD
6135— 18
6136-— 7D
6139~ E8
613A— EO
613C— Do
613E— 8D
6141 60
Name

Release 1.0

BUFCLR

RTS

; pointer
;return to calling program

Clears the received data buffer of the Apple, This
buffer is only used when a block of data 1s offloaded
from the PC or downlocaded to the PC. This block is
located at address 4000H in the Apple memory map.

71

71

71

71

69

61

XSUM

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY
LDA
STA
INY
STA
JSR
BCS
JSR
CLC
BCC
RTS

#3500
§7101.
#3540
87102
#s00
SEO
#3540
SEl
#3500
8711E
#8350
8711F
#500
#3500
{8EO0),Y

(8EO0) .Y
$6960
§6290
8§61A0

8627C

3

Computes checksum and loads this wvalue in the transmit
message buffer.

71

71

71

FCLEAR

LDBX
LDA

CLC
ADC
INX
CPX
BNE
STaA

RTS

#3000
87100

$7101,%
#504

86135
87105

;jclear pointer

;get 1st byte of transmit message
; buffer

jclear carry

;add to next byte of buffer

;get next byte

;got all 5 bytes?

;if not, get next byte

;1if so, store computed checksum at
; 7105H

;return to calling program

Description: Clears a block of addresses in the programmable
controller,.

6800~ AD 10 71 LDA 87110 ;get low byte of starting address

6803— 8D 01 71 STA §7101 ;put this at low byte of address
; pointer

6806— AD 11 71 LDA 87111 ;get high byte of starting address

6809 8D 02 71 STA §7102 ;put this at high byte of address
; pointer

680C— AS 01 LDA #s501 ;get "write word" opcode

680E— 8D 00 71 STA 87100 ;s8tore this opcode at first byte
; of msg buf.

6811~ A9 00 LDA #5500 ;1oad "zero" as data....

6813— 8D 03 71 STA §7103 ;first to the low byte of address
; pointer,

6816— 8D 04 71 STA 87104 ;then to the high byte

6819— EA NOP

681A— EA NOP

681B- EA NOP

681C— 20 30 &1 JSR 386130 ;jcalculate transmitted checksum

681F— EA NOP

6820~ EA NOP

6821— EA NQP

6822—- 20 00 66 JSR 86600 ;transmit 6 byte string out serial
; port

6825— EA NOP

6826— EA NOP

6827— EA NOP

6828~ AD 0OC 71 LDA §710C ;load "return data error" register

682B— DO 1B BNE 86848 ;if error, then quit

682D— EA NOP

682E- EA NOP

682F— EA NOP

6830~— AD 0z 71 LDA 87102 ;otherwise, get high byte of add.
; polnter

6833— CDh 13 71 CMP 87113 ;compare this with high byte of
; end pointer

6836— DO 11 BNE 368449 ;if not the same, then continue

6838— AD 01 71 LDA §7101 ;otherwise, get low byte of add.
; pointer

683B~— CD 12 71 CMP g7112 ;compare this with low byte of
; end, pointer

683E—~ Do 09 BNE $§6849 ;if not the same, then continue

6840- EA NOP

6841~ EA NOP

6842— EA NOP

5843- Ea NOP

6844~ EA NOP

6845— EA NOP

6846— EA NOP

6847~ EA NOP

6848— 60 RTS ;otherwise it is time to quit

6849-— 20 AC b1 JSR S61A0 ;increment address pointer

684C— A9 00 LDA #8500 iset up unconditional Jjump

684E— FO CC BEQ §681C ;unconditionally jump to 681CH

Release 1.0 H -9

Name

Description:
6860— AD
6863~ 8D
6866— AD
6869— 8D
686C— AD
686F— 8D
6872— AD
6875— 8D
6878— 60
Name
Description:
61A0— 18
61A1- EE
61A4-— FO
61A6— 60
61A7— EE
61AA— 60
Name

PTRSAVE
Saves buffer pointers
1Cc 71 LDA $711C
24 71 STA 87124
iD 71 LDA §711D
25 71 STA §7125
18 71 LDA 8711E
26 71 STA 87126
1F 71 LDA 8711F
27 71 STA s§7127
RTS
INCADR
Increments PC address poilnter
CLC
01 71 INC $7101
01 BEQ S61A7
RTS
0z 71 INC 57102
RTS
FDUMP

Description:

6760—
6761—
6762—
6765—
6768~-
6E76B-
676E-
6770—
6772—

Release 1.0

18
EA
AD
8D
AD
8D
A9
85
8D

Offloads a block of memory from the programmable
controller. This data from the PC is placed in a 16K
block of memory in the Apple][+ starting at address
4000h.

Start of Program : 26464/6760
Start of Buffer : 16384/4000
PC Starting Address : 28956/711C
28957/711D
PC Ending Address : 28958/711E
28959/711F
Buffer Folinter : 224/00E0 same as FSTORE
225/00E1 " " "
CLC
NOP
1C¢ 71 LDA §711C
01 71 STA 37101
1D 71 LDA 8§711D
02 71 STA 37102
00 LDA #3800
EO STA SEO
00 71 STA 7100

H - 10

40
E1

30
00
50

ocC
20
00

09
EO

0F:
EO
60

06
AQ

6775— A9
6777— 85
6779- EA
677A— EA
677B— EA
677C— EA
677D— EA
677E— EA
677F— 20
6782~ 20
6785— 20
6788 EA
6789~ EA
678A— EA
678B— EA
678C—- EA
678D EA
678E-—- AD
6791— Do
6793~ AQ
6795 EA
6796~ EA
6797- EA
6798— EA
6799~ AD
679C~- 91
679E- C8
G79F— AD
67AZ2— 91
67A4— 20
67A7— EA
67A8— EA
67A9—- EA
67AA— Ea
67AB- BO
67AD— 20
67B0-—- 18
67B1—- 90
67B3— 60
Name
Description:

Release 1.0

LDA #540
STA SE1
NOFP
NOP
NOP
NOP
NOFP
NOP
61 JSR 56130
66 JSR $6600
61 JSR 36150
NOP
NOP
NOP
NOP
NOF
NOP
71 LDa §710C
BNE $67B3
LDY #S00
NOP
NOP
NOFP
NOP
71 LDA 57109
STA (SEQ),Y
INY
71 LDA 87104
STA (SE0) .Y
69 JSR $63960
NOP
NOP
NOP
NOP
BCS S67B3
61 JSR S61A0
CLC
BCC 8677F
RTS

FSTORE

An assembly language program that copies a block of
memory from the Apple 1[+ computer and transmits this
block to a Numa-Logic PC700/900/1100 programmable
controller,

Start of Program : 26548/67B4
Start of Buffer : 16384/4000
PC Starting Address : 283962/7122
28963/7123
PC Ending Address : 28958/711E
28959/711F
Buffer Pointer : 224/00EQ0 same as FSTORE

H - 11

225/00E1 B "

Buffer End Pointer : 228/00E4
229/00E5

67B4— A5 EO LDA SEQ
67B6— 85 E4 STA SE4
67B8~— AS E1 LDA SE1
67BA— 85 ES STA SES
67BC— A9 01 LDA #501
67BE— 8D 00 71 STA §7100
67C1- AD 22 71 LDA §7122
67C4— 8D 01 71 STA §7101
67C7— AD 23 71 LDA 87123
G7CA-—- 8D 0z 71 STA 57102
67CD— A9 00 LDA #5300
67CF— 85 EO STA SEQ
67D1— A9 40 LDA #540
67D3— 85 E1 STA sE1
67D5- AOQ 0O LDY #3800
67D7— Bl EO LDA (SE0),Y
67D9— 8D 03 71 STA 7103
67DC— C8 INY
670D~ B1 EO LDA (SE0),Y
B67DF— 8D 04 71 STa §7104
67E2— 20 30 B1 JSR $§6130
67E5- 20 00 €66 JSR 86600
67E8— 20 50 61 JSR 56150
67EB— AD 0C 71 LDA §710C
67EE~— DO OB BNE SE7FB
67F0-— 20 60 B9 JSR 86960
67F3- BO 06 BCS S67FB
67F5— 20 A0 61 JSR S61A0
67F8— 18 CLC
67F9— 90 DA BCC 867D5
67FB—- 60 RTS
Name : ZERO

Description: Loads zero into Apple memory locations 7103H and 7104H.
This program also loads the opcode register (7100H)
with the value one in preparation for a write command,

6120— A9 00 LDA #500

6122— 8b 03 71 STA 87103
6125— 8D 04 71 STA $7104
6128- A9 01 LDA #501

612A— 8D 00 71 STA 37100
612D— 60 RTS

Release 1.0 H - 12

Name : XSUM

Description: Calculates the proper checksum from the values stored
in Apple memory locations 7100H through 7104H,
inclusive, The calculated checksum 1s loaded into
Apple memory location 7105H.

6130- AZ 00 LDX #5300
6132- AD 00 71 LDA $7100
6135- 18 CLC

6136— 7D 01 71 ADC 87101 ,X
6139- E8 INX

613A- EC 04 CPX #3504
613C— DO F7 BNE 56135
613E- 8D 05 71 STA $7105
6141— 60 RTS

Name : DATAIO

Description: Apprle program to transmit a 6 byte message to a
programmable controller and wait for a response.

6600- AZ2 00 LDX #3500
6602— A0 0O LDY #3500
6604— EA NOP

6605— EA NOP

6606— EA NOP

6607 EA NOP

6608— EA NOP

6609~ 8E 00 70 STX $7000
660C— AD 98 CO LDA $C098
660F— EA NOP

6610- EA NOF

6611~ BD 00 71 LDA 87100,X
6614— 8D 98 CO STA 8C098
6617— E8 INX

6618— EO 06 CPX¥ #306
661A— FO 09 BEQ 86625
661C— AD 99 CO LDA $C0SS
661F- 29 10 AND #3510
6621— FO F9 BEQ $661C
6623- Do EC BNE 86611
6625— A2 00 LDX" #3500
6627- EA NOP

6628— EA NOP

6629— EA NOF

6624~ AD 399 CO LDA 3C0399
662D— 29 08 AND #3508
662F- Do OF BNE 86640
6631~ EA NOP

6632— C8 INY

6633— DO F2 BNE 86627
6635— EE 00 70 INC 87000
6638- DO ED BNE 86627

Release 1.0 H - 13

o1
ocC

00
00
98
06

06
L7

a8
0D

EO
EC

EO
00
oF
1E
01
09

65

65

65

65

663A~ A9
663C— 0D
663F— 60
6640—- AO
6642~ 8C
6645— AD
656648~ 9D
6E64B— E8
664C~ EO0
664E— DO
6650— EA
6651 — AD
6654— 8E
6657 &0
Name
Description:
6960— 18
6961~ E6
6963— E6
6965~ EA
6966— EA
6967~ EA
6968— EA
6969— AS
696B— C9
696D~ FO
696F— AD
6972~ CD
6975~ FO
6977— 18
6978— 60
Name
Description:
25856

57
25858

59
25860

61
25862

63

Release 1.0

LDA #s01
71 ORA 3710C

RTS

LDY #3500
70 STY 57000
Co LDA $C038
71 STA 87106.,X

INX

CPX #506

BNE 86627

NOP
Cco LDA 8C0398
71 STX $710D

RTS

BUFINC

This program increments the buffer pointer memory
locations in the Apple memory.

CLC

INC SEQ

INC SEO

NOP

NOP

NOF

NOP

LDA SEOQ

CcMP #5300

BEQ 36397E
71 LDA $711E
71 CMP 87101

BEQ 86980

CLC

RTS

GSTA

This program offloads the programmable controller
rarameter table and lcads this information into the
following Apple memory locations:

00 End of program pointer

01

0z Highest Holding Register Used
03

04 Low ladder checksum

05

06 High ladder checKsum

07

H - 14

25864 6508 Register checksum

65 09
25866 650A Flag register
67 0B Mode register
25868 650C Error register
69 0D
25870 650E RESERVED
25879 6517 RESERVED
25880 6518 Monitor Table Address
81 19
25882 651A Qutput Register Address
83 1B
25884 651C Input Register Address
85 1D
25886 651E OR’s allowed
87 1F IR’'s allowed
25888 6520 Force table address — outputs
89 21
25890 6522 Force table address — inputs
91 23
25892 6524 Output image table address
93 25
25894 6526 Input image table address
95 27
25896 6528 Number of outputs divided by 8
97 29 Number of inputs divided by 8
25898 65ZA Maximum discrete coils allowed
99 2B Memory size divided by 256
25900 652C Sof tware version
01 2D Executive code (upper 4 bits-product code)
{lower 4 bits-modifier)
25902 652E Special Functions Allowed
25919 653F Special Functions Allowed
6200— EA NQP
6201 EA NQP
6202— EA NOP

Release 1.0 H - 15

6203—
6205-
6208-
620B—
620E-
6210-
6213—
6216—
6219-
621A—
621B-
621C—~
621F—
6222—
6225-
6228—
622B-
B2Z2E-
6231—
6234~
6237—-
6239-
623B—

Name

AS
8D
8D
8D
A9
8D
20
20
EA
EA
EA
AE
AD
9D
AD
9D
EE
EE
20
AD
C3
Do
60

00
OF
00
01
82
02
30
00

OF
09
00
0a
01
oF
oF
AD
oF
40
D8

Description:

6700—
6702—-
6704—
6707~
670A—-
670C~
670F—-
6711
6714—
6715—
6716~
6717—-
6718-
6718-
671A~-
671C-
671E-
6721—
6723—
6724-
6727—
672A—
672C—

Release 1.0

A2
AS
8D
8D
AS
8D
A9
8D
EA
EA
EA
EA
EA
EA
A2
A9
8D
AS
EA
20
AD
29
FO

00
00
39
00
29
9A
SE
9B

00
00
98
FF

A8
99
08
CE

71
71
71

71
61
66

71
71
65
71
65
71
71
61
71

SYNC1

LDA
STA
STA
STA
LDA
STA
JSR
JSR
NOP
NOF
NOP
LDX
LDA
STA
LDA
STA
INC
INC
JSR
LDA
CMP
BNE
RTS

#3500

$710F
£7100
§7101
#8582

$7102
$6130
56600

$710F
57109
$6500,X
8710A
86501 .,X
8710F
$710F
$61A0
$710F
#3540
56213

Routine to synchronize with the programmable controller
by sending null (0O0H) bytes,
for a response.

Co
70

co

CO

co

FC
CcOo

LDX
LDA
STA
STA
LDA
STA
LDA
STA
NOFP
NOP
NOP
NOP
NOP
NOP
LDX
LDA
STA
LDA
NOP
JSR
LDA
AND
BEQ

#500
#5800
3C099
37000
#5293
SCOSA
#S9E
sCO9B

#3500
#3500
$C098
#SFF

SFCAB
8C03S93
#2508

8673C

H - 16

while continuously looKing

672E~
6730—
6733~
6735—
6736
6738-
673B—
673C—
673F~
6741—
6744
6746—
6748~
674B-—
674E—

Release 1,0

AS
CD
Do
60

20
EA
EE
A9
Ch
Do
A9
0D
8D
60

00
98
07

10
00

00
10
(0]
D4
01
OE
OE

co

FC

70

70

71
71

LDA
CMP
BNE
RTS
LDA
JSR
NOP
INC
LDA
CMP
BNE
LDA
ORA
STA
RTS

#5800
8C0398
8§673C

#s10
3FCO0

$7000
#510

37000
$671A4
#3501

8710E
$710E

H - 17

Appendix J: Radio Shack Assembly Calls (TRSDOS)

The Radioc Shack Model II computer has a convenient method of
communicating through the serial port using assembly language. That
method is called "Supervisory Calls (SVC)™. For more information on
the TRSDOS SVC, consult your TRSDOS manual,

The program was written in Z80 assembly language. The reader should
be familiar with this language to analyze the program.

The following program is named "COMLINK"™ and is loaded into high
memory just before transferring control to BASIC, Some
abbreviations include:

LB Lower Byte

UB Upper Byte

sSvC Supervisory Call

B/TX Channel B transmit SVC

B/RCVY Channel B receiye SVC

ASA Argument Storage Area (Consult vour Model II BASIC

manual)
00000
v 00100 ENTRY RCV
0000’ ' 00200 ASEG
00300 ORG O0OEQODOOOH ;START OF PROGRAM
EQ0O 3E 62 00400 RCV: LD A,E2H ; LOAD B/RCV OF CODE
E002 CF 00500 RST 8 ;i BXECUTE 8SVC
EQO03 C2 EQ08 00600 JP NZ,NOCHR ;CHAR. FOUND?
E0O6 70 00700 LD (HL),B ;LOAD CHR TO LB ASA
E007 C9 00800 RET ;RETURN TO BASIC
E0Q08 ES 00900 NOCHR: PUSH HL ; PUSH ADD OF LB ASA
EQ0g DD E1 00950 - POP IX ;MOVE HL INTO IX
EOOCB DD 23 01000 INC IX ; INC UPPER BYTE ADD.
EQOD C6 01 01025 ADD A,O01H ;ADD 256 TO ERR REG.
EQOF DD 77 00 01050 LD ({IX),A ; LOAD STATUS TO U.B.
E012 C9g 01100 RET ;RETURN TO BASIC
E013 46 01300 TX: LD B, (HL) ; LOAD CHR TO BE SENT
E014 3E 63 01400 LD A,63H ; LOAD B/TX QP CODE
E016 CF 01500 RST 8 ; BEXECUTE SVC
E017 C2 EO1B 01600 JP NZ ,NTX ; IF NOT TX'ED, JMP
EQ1A C3g 01700 RET ; RETURN TO BASIC
EQ1B ES5 01800 NTX: PUSH HL ;PUSH L.B. OF ASA
Eoi1C DD E1 01850 POP IX ;MOVE HL INTO IX
EO1E DD 23 013800 INC IX ; INC U.B, ADD.
E0z0 DD 77 00 01950 LD (IX),A ; LOAD STATUS TO U, B.
E0Z3 CSs 02000 RET ; RETURN TO BASIC
02200 END

Release 1.0 J -1

